期刊文献+

基于形态学多重分形的遥感图像多尺度分割 被引量:12

Multiscale segmentation of remote sensing images based on local morphological multifractal exponents
在线阅读 下载PDF
导出
摘要 提出了一种基于数学形态学的局部多重分形指数特征来描述图像中的纹理信息,并构造了基于图像四叉树的多尺度分割算法来实现遥感图像的粗分割。形态学多重分形指数能够准确而全面的刻画纹理的局部尺度特性,而多尺度分割算法可以在保持分割精度的前提下大大降低时间复杂度。在遥感图像上进行的对比实验表明,该算法在分割的效果和效率上都优于使用其他纹理特征的分割算法。 To separate artificial regions in a remote sensing image from natural background, a new texture descriptor named the LMME(Local Morphological Multifractal Exponents) and a quadtree-based multiscale segmentation algorithm were proposed in this paper. To assess its performance in segmentation of remote sensing images, the proposed approach was compared with four other approaches. The formerused box-counting based multifractal dimensions, and the latter used a Ganssian Markov random field based feature. The experimental results demonstrate that the proposed approach can provide more effective and more efficient segmentations.
作者 夏勇 赵荣椿
出处 《计算机应用》 CSCD 北大核心 2006年第9期2071-2073,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60141002) 航空基金资助项目(02I53073)
关键词 图像分割 多重分形估计 数学形态学 多尺度分割 image segmentation multifraetal estimation mathematical morphology multiseale segmentation
  • 相关文献

参考文献12

  • 1MANDELBROT BB. How long is the coast of Britain? Statistical self-similarity and fractal dimension[ J]. Science, 1967, 156:636-638.
  • 2PENTLAND AP. Fractal based description of natural scenes[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984, 6(6): 661-674.
  • 3SARKAR N, CHAUDHURI BB. Texture seganentation using fractal dimension[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(1) : 72 -77.
  • 4FENG J, LIN WC, CHEN CT. Fractal box-counting approach to fractal dimension estimation[ A]. Proceedings of ICPR'96[ C]. Vienna, 1996. 854 -858.
  • 5DU G, YEO TS. A novel multifractal estimation method and its application to remote image seglnentation[ J]. IEEE Transactions on Geoscience Remote Sensing, 2002, 40(4):980 - 982.
  • 6李厚强,刘政凯,林峰.基于分形理论和Kohonen神经网络的纹理图像分割方法[J].计算机工程与应用,2001,37(7):44-46. 被引量:13
  • 7HARALICK RM, SHANMUGAM K, DINSTEIN J. Texture features for image classification[ J]. IEEE Transactions on System, Man and Cybernetics, 1973, 3(1) : 610 -621.
  • 8LAWS K. Textured Image Seglnentation[ R]. Technical Report, USCIPI Report 940. Los Angeles: University of Southern California,1980.
  • 9MANJUNATH BS, CHELLAPPA R. Unsupervised texture segmentation using Markov random fields [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3) : 478 -482.
  • 10夏勇,赵荣椿,江泽涛.一种基于数学形态学的分形维数估计方法[J].中国图象图形学报(A辑),2004,9(6):760-766. 被引量:13

二级参考文献13

  • 1李后强.分形理论在大分子科学及相关领域中的一些应用[J].大自然探索,1993,12(1):28-32. 被引量:27
  • 2Mandeibrot B B. The Fractal Genmetry of Nature[M], New York, W, H. Freeman, 1983.
  • 3Pentland A P. Fractal based description of natural scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):661-674.
  • 4Liu Yu-xin, Li Yan-da. Image feature extraction and segmentation using frataldimension[A]. In: Proceedings of ICSP'97[C], Singapore, 1997:975-979.
  • 5Sarkar N. Chaudhuri B B. An efficient differential box-counting approach to compute fractal dimcnsion of image [J]. IEEE Transactions on System Man and Cybernetics. 1994.24(1):115-120.
  • 6Jin X C, Ong S H, Jayasooriah. A practical method for estimation fractal dimension[J]. Pattern Recognition Letters,1995.16(5): 457-464.
  • 7Samarabandu J, Acharye R, Hausmann E, et al. Analysis of bone X-rays using morphological fractals[J]. IEEE Transactions on Medical Imaging, 1993, 12(3) : 466-470.
  • 8Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(1): 72-77.
  • 9Peleg S, Naor J. Hartley R. et al. Multiple resolution texture analysis and classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984. 6(4): 518-523.
  • 10Feng Jic, Lin Wei-chung, Chen Chin-tu. Fractal box-counting approach to fractal dimension estimation[A], In, Proceedings of ICPR^+ 96[C],Vienna. 1996: 854-858.

共引文献598

同被引文献138

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部