期刊文献+

传递矩阵方法与矩形势垒的量子隧穿 被引量:10

Transfer matrix method in the study of quantum transmission for rectangular barrier
在线阅读 下载PDF
导出
摘要 利用传递矩阵方法精确计算了一维定态薛定谔方程,求解出电子穿过矩形势垒的透射系数,进一步研究了该透射系数与有效质量和矩形势垒参数的关系。数值计算结果表明,有效质量和矩形势垒参数对透射系数的影响同等重要。 Transmission coefficient of electron tunneling through rectangular barrier has been calculated based on the exact solution of the one-dimensional time-independent Schrodinger equation with the transfer matrix method ; furthermore , the dependence of the transmission coefficient on the effective masses and parameters of rectangular barrier also has been studied. Numerical analysis shows that the effective masses cannot be ignored in comparison with parameters of rectangular barrier for the transmission coefficient.
作者 张红梅 刘德
出处 《河北科技大学学报》 CAS 2006年第3期196-199,213,共5页 Journal of Hebei University of Science and Technology
关键词 量子隧穿 矩形势垒 传递矩阵方法 透射系数 quantum transmission rectangular barrier the transfer matrix method transmission coefficient
  • 相关文献

参考文献2

二级参考文献27

  • 1[1]Berry M V,Tabor M. Level Clustering in the Regular Spectrum[J]. Proc. R. Soc. Lond. A,1977,356:375-394.
  • 2[2]Greenman C D. The Generic Spacing Distribation of Two-dimensional Harmonic Oscillator[J]. J. Phys A, 1996,29:4065- 4081.
  • 3[3]Calogero F,Marchioro C. Exact Solution of a One-dimensional Three-body Scatlering Problem with Two-body and/or Three-body Inverse-square Potentials[J]. J. Math. Phys, 1974,15:1425-1430.
  • 4[4]Sutherland B. Quantum Many-body Problem in One Dimersion:Ground State[J]. J. Math. Phys, 1971,12:246-250.
  • 5[5]Rnan W Y,Wu T W,Lie R Y, et al. Energy Spectra of Three Anions in a Harmonic Well[J]. Phys. Lett. A, 1996, 215: 113-118.
  • 6Tsu R and Esaki L 1973 Appl. Phys. Lett. 22 562.
  • 7Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593.
  • 8Ando Y and Itoh T 1987 J. Appl. Phys. 61 1497.
  • 9Boykin T B 1995 J. Appl. Phys. 78 6818.
  • 10Wang X H, Gu B Y and Yang G Z 1997 Phys. Rev. B 55 9340.

共引文献1

同被引文献134

  • 1申志荣.半波损失的量子本质[J].陕西科技大学学报(自然科学版),1999,18(3):121-123. 被引量:3
  • 2李渝澜.半波损失与能量守恒[J].大学物理实验,1996,9(4):3-5. 被引量:5
  • 3姚志欣,潘佰良,陈钢,钟建伟.光子的态矢量函数[J].物理学报,2006,55(5):2158-2164. 被引量:9
  • 4李春雷,肖景林.势垒的非对称性对隧穿几率的影响[J].内蒙古民族大学学报(自然科学版),2006,21(3):253-256. 被引量:4
  • 5罗诗裕.超晶格“锯齿形”势垒的穿透系数[J].东莞理工学院学报,2007,14(1):26-29. 被引量:1
  • 6LAMACRAFT A.Shot noise of spin-polarized electrons[J].Phys Rev B,2004,69(8):1 301-1 304.
  • 7NAGAEV K E,GLAZMAN L I.Current fluctuations in a spin filter with paramagnetic impurities[J].Phys Rev B,2006,73(5):4 423-4 428.
  • 8EGUES J C,BURKARD G,SARAGA D S,et al.Shot noise and spin-orbit coherent control of entangled and spin-polarized electrons[J].Phys Rev B,2005,72(23):5 326-5 332.
  • 9ZHANG Ying-tao,GUO Yong,LI You-cheng.Rashba spin-orbit effect on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions[J].Phys Status Solidi B,2005,242(14):2 960-2 966.
  • 10JOHNSON M.Theory of spin-dependent transport in ferromagnet-semiconductor heterostructures[J].Phys Rev B,1998,58(15):9 635-9 638.

引证文献10

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部