期刊文献+

Al-34%Mg-6%Zn和Al-28%Mg-14%Zn合金的热分析研究 被引量:13

Thermal Analytical Investigations of Al-34%Mg-6%Zn and Al-28%Mg-14%Zn Alloys
在线阅读 下载PDF
导出
摘要 利用差示扫描量热仪(DSC)和H-90型膨胀仪,对潜热储能材料Al-34%Mg-6%Zn和Al-28%Mg.14%Zn合金的热物性参数进行了测定,如固、液态时的比热容,30~500℃间的质量密度,熔化温度和熔化潜热等.测试结果表明,两种合金的熔化温度和熔化潜热分别为454℃、447℃和314.4kJ/kg、303.2kJ/kg.从室温加热到熔化温度时,两种合金的密度分别减少1.05%和1.09%.在相变之前,两种合金的比热容随温度的升高而增大,在445℃时,分别为1368.5J·kg^-1·k^-1、1203.6J·kg^-1·K^-1.在相变过程中,由于熔化潜热的原因,合金的比热容变化很大.从理论计算值的比较和误差分析来看,上述热物性参数的测试结果是可信的.本文还对合金组元和相对热物性参数的影响进行了讨论. The following thermo-physical properties are determined for Al-34% Mg-6% Zn ( in wt. % ) and Al-28% Mg-14% Zn alloys used for thermal energy storage applications, such as the specific heat capacity including solid and liquid state;the mass density in the temperature range 30 -500 ℃ ; the melting temperature and the latent heat of fusion. The properties are measured by differential scanning calorimetry (DSC) and H-90 type dilatometer. The test results show that the melting temperature and latent heat of fusion for the two alloys are 454 ℃, 447 ℃ and 314.4kJ/kg, 303.2kJ/kg, respectively. Their density heated from room temperature to melting temperature are decreased by 1.05 %, 1.09% ,respectively. Their specific heat capacity are growing with the temperature increasing before the beginning of phase change, and are 1 368.5 J · kg^-1 · K^-1, 1203.6 J · kg^-1· K^-1 at 445 ℃, respectively. The change of specific heat capacity are great due to the existing of latent heat of fusion during the phase transformation process. The measured results mentioned above are credible from the points of view of comparing with the value of theory calculation and error analysis of data. The mechanism that the effect of alloy compositions and phases on these properties is discussed in this paper.
出处 《广东工业大学学报》 CAS 2006年第3期8-15,共8页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(59876010)
关键词 铝合金 比热容 熔化潜热 质量密度 热分析 aluminum alloy specific heat capacity latent heat of fusion mass density thermal analysis
  • 相关文献

参考文献10

  • 1Belén Z,José M M,Luisa F C.Review on thermal energy storage with phase change:materials,heat tramsfer analysis and applications[J].Applied Thermal Engineering,2003 (23):251-283.
  • 2孙建强,张仁元.金属相变储能与技术的研究与发展[J].材料导报,2005,19(8):99-101. 被引量:33
  • 3张仁元,柯秀芳.新型相变材料与电热相变储能热水热风联供装置及经济性分析[J].电力需求侧管理,2002,4(6):36-38. 被引量:13
  • 4Birchenall C E,Riechman A F.Heat storage in eutectic alloys[J].Metallurgical Transactions A,1980 (11A):1415-1420.
  • 5Farkas D,Birchennall C E.New eutectic alloys and their heats of transformation[J].Metallurgical Transactions A,1985(16A):324-328.
  • 6Achard P.Heat Storage at 450 deg C in Aluminum-Magnesium Alloys[C] ///Rational Utilization of Energy.France:Editions Europeennes Thermique et Industrie,1981:39-46.
  • 7中国金属学会.中国有色金属学会金属物理性能及测试方法.金属材料物理性能手册(第1册)[M].北京:冶金工业出版社,1987.
  • 8梁英教 车荫昌.无机热力学数据手册[M].沈阳:东北工业大学出版社,1993..
  • 9蒙多尔福.铝合金的组织与性能[M].北京:冶金工业出版社,1988..
  • 10宋学猛.金属物理性能分析[M].北京:机械工业出版社,1990:72-75.

二级参考文献30

  • 1陈正荣,刑登清,王守彪.金属相变高温贮存太阳能的研究[J].西藏科技,1995(4):10-12. 被引量:7
  • 2邹向,仝兆丰.铝硅合金用作相变储热材料的研究[J].新能源,1996,18(8):1-3. 被引量:32
  • 3顾国成 刘邦津.热浸镀[M].北京:化学工业出版社,1988.86.
  • 4黄志光 梅绍华 吴广忠.金属相变热能储存技术的展望.新能源,1999,(4):11-14.
  • 5张寅平 狄洪发 王磬.[P].CN Pat,01275868.X.2002-10-23.
  • 6狄洪发 张寅平 王智超.[P].CN Pat,01259379.6.2002-07-10.
  • 7Ishizuka M,Fukuoka Y. Development of a new high density package cooling technique using low melting point alloys.ASME/JSME Joint Thermal Engineering Conference, 1991,2:375.
  • 8Belen Z,Jose M M, Luisa F C. Review on thermal energy storage with phase change: materials, heat tramsfer analysis and applications. Appl Therm Eng, 2003,23: 270.
  • 9Birchenall C E, Riechman A F. Heat storage in eutectic alloys. Metall Trans A, 1980, (11A): 1415.
  • 10张仁元.相变储能技术及其应用[Z].广州:中国科学院广州能源研究所,1991.18.

共引文献66

同被引文献183

引证文献13

二级引证文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部