摘要
Digital receivers have become more and more popular in radar, communication, and electric warfare for the advantages compared with their analog counterparts. But conventional digital receivers have been generally considered impractical for bandwidth greater than several hundreds MHz. To extend receiver bandwidth, decrease data rate and save hardware resources, three novel structures are proposed. They decimate the data stream prior to mixing and filtering, then process the multiple decimated streams in parallel at a lower rate. Consequently it is feasible to realize wideband receivers on the current ASIC devices. A design example and corresponding simulation results are demonstrated to evaluate the proposed structures.
Digital receivers have become more and more popular in radar, communication, and electric warfare for the advantages compared with their analog counterparts. But conventional digital receivers have been generally considered impractical for bandwidth greater than several hundreds MHz. To extend receiver bandwidth, decrease data rate and save hardware resources, three novel structures are proposed. They decimate the data stream prior to mixing and filtering, then process the multiple decimated streams in parallel at a lower rate. Consequently it is feasible to realize wideband receivers on the current ASIC devices. A design example and corresponding simulation results are demonstrated to evaluate the proposed structures.
基金
This project was supported by the National Defense I mportant Research Foundation of China(03413070506)