期刊文献+

AlMnCa合金脱氧和非金属夹杂物控制技术 被引量:9

Steel Deoxidation and Non-metallic Inclusion Control Using AlMnCa Alloy
在线阅读 下载PDF
导出
摘要 在1873K下,MoSi2电阻炉内用70mm×100mmMgO坩埚和AlMnCa合金开展了3炉低碳低硅钢脱氧实验.结果表明,用1#AlMnCa脱氧后,钢中溶解氧和全氧含量均较低,终点全氧质量分数为37×10-6.用AlMnCa脱氧后钢中夹杂物大部分为球形的含有CaO的复合夹杂物.用AlMnFe脱氧后,钢中主要是Al2O3或Al2O3-MnO等构成的复合夹杂物,其形状仅有少量为球形.实验终点钢中89.1%的夹杂物尺寸小于10μm,无大于50μm的夹杂物.用1#AlMnCa在25t转炉上进行了6炉TGD07钢脱氧工业试验,脱氧后钢中氧质量分数平均为23.8×10-6,最低达到8×10-6.与未用AlMnCa合金脱氧的钢相比,钢材的平均屈服强度提高19.2MPa,抗拉强度提高26.2MPa,延伸率增加0.55%. Experiments for deoxidation of low-carbon and low-silicon steel and control of non-metallic inclusion were done for 3 heats at 1 873 K in a Ф70 mm × 100 mm MgO crucible put into MoSi2 resistance furnace, with AlMnCa alloy used as deoxidant. The results showed that after deoxidized with 1^# AlMnCa alloy, the dissolved oxygen and total oxygen content in the steel are both the lowest and the endpoint total oxygen is 37 × 10^-6, and most inclusions in the steel are spherical CaO-containing compounds. However, after the steel was deoxidized by AlMnFe alloy, most inclusions are Al2O3 or Al2O3-MnO compounds among which only a small part is spherical. In the final steel 89.1% of inclusion size is less than 10 μm with none bigger than 50 μm. Then, 6 heats of industrial deoxidation tests for TGD07 steel were done in an 25 t LD converter with 1 ^# AlMnCa alloy, and the results showed that the mean oxygen content in molten steel is 23.8 × 10^-6 even down to 8 ×10^-6. The average yield strength, tensile strength and elongation percentage of the test steel are increased by 19.2 MPa, 26.2 MPa and 0.55%, respectively, compared with that of the not test steel.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1118-1121,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金与上海宝钢集团公司联合资助项目(50174012).
关键词 炼钢 脱氧 AlMnCa合金 夹杂物 低碳钢 低硅钢 steelmaking deoxidation AlMnCa alloy inclusion low-carbon steel low-silicon steel
  • 相关文献

参考文献12

  • 1Lachmund H,Xie Y.High purity steels:a challenge to improved steelmaking processes[J].Ironmaking and Steelmaking,2003,30(2):125-129.
  • 2Dawson S.Tundish nozzle blockage during the continuous casting of aluminum-killed steel[J].Iron & Steelmaker,1990,17(4):33-39.
  • 3Katsuhiro S.Reaction mechanism between alumina immersion nozzle and low carbon steel[J].ISIJ International,1994,34(10):802-809.
  • 4Zhang L F,Pluschkell W.Nucleation and growth kinetics of inclusions during liquid steel deoxidation[J].Ironmaking and Steelmaking,2003,30(2):106-110.
  • 5Truebra L Jr.Nozzle clogging during the continuous casting of aluminum-killed steel[D].Rolla:University of Missouri-Rolla,2003.
  • 6姜周华,刘杨,李阳,梁连科.Si-Ca,Si-Ba及Ca-Ba二元合金熔体组元活度的计算[J].东北大学学报(自然科学版),2005,26(3):252-255. 被引量:6
  • 7Wang Y.Inclusion evolution in molten and solidifying steel[D].Pittsburgh:Carnegie Mellon University,2003.
  • 8Simpson I D,Tritsiniotis Z,Moore L G.Steel cleanness requirements for X65 to X80 electric resistance welded line pipe steels[J].Ironmaking and Steelmaking,2003,30(2):158-164.
  • 9Holappa L,Hmlinen M,Liukkonen M,et al.Thermodynamic examination of inclusion modification and precipitation from calcium treatment to solidified steel[J].Ironmaking and Steelmaking,2003,30(2):111-115.
  • 10尹弘斌,金山同.CAS工艺条件下钢包内夹杂物上浮规律的理论研究[J].钢铁,1995,30(10):13-17. 被引量:18

二级参考文献10

共引文献22

同被引文献103

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部