期刊文献+

一种广义高斯分布的参数快速估计法 被引量:38

A FAST PARAMETER ESTIMATION OF GENERALIZED GAUSSIAN DISTRIBUTION
在线阅读 下载PDF
导出
摘要 广义高斯分布(GGD)在信号处理和图像处理等领域都有广泛的应用。本文从广义高斯概率密度函数及其统计性质出发,首先推导出广义高斯分布参数比函数,然后通过曲线拟合的方式,给出了一种GGD的形状参数和尺度参数的估计方法,最后利用模拟实验对之加以验证。 Generalized Gaussian distribution is a class of symmetry distribution with the Gaussian and Laplacian distribution as the special cases, with delta distribution and uniformity distribution as limit. It is widely applied in lots of fields. In this paper, we first deduce the Generalized Gaussian parameter ratio function, and then bring up a fast parameter estimation of Generalized Gaussian distribution. Finally we make use of simulations to verify the method.
出处 《工程地球物理学报》 2006年第3期172-176,共5页 Chinese Journal of Engineering Geophysics
基金 国家自然科学基金(项目编号:60472062)资助
关键词 广义高斯分布 参数比函数 参数估计 generalized gaussian distribution parameter ratio function parameter estimation
  • 相关文献

参考文献11

  • 1[1]Joshi R J,Fischer T R.Comparison of generalized Gaussian and laplacian modeling in DCT image coding[J].IEEE Trans.on signal processing letters,1995,2(5):81-82.
  • 2[2]Do M N,Vetteli M.Wavelet based texture retrieval using generalized Gaussian density and Kullback leibler distance[J].IEEE Trans.on image processing,2002,11(2):146-158.
  • 3[3]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.on Pattern Recognit Machine Intell,1989,11(7):674-693.
  • 4[4]Walden A T,Hosken J W J.The nature of the nonGaussianity of primary reflection coefficients and its significance for deconvolution[A].The 47th meeting of the EAEG,Budapest,1985.1038-1066.
  • 5[5]Cao J,Murara N.A stable and robust ICA algorithm based on T-distribution and generalized Gaussian distribution on model[A].Neural Networks for Signal Processing[C].New York:IEEE Press,1999,283-292.
  • 6[6]Stacy E W.A generalization of gamma distribution[J].Ann Math Stat,1962,28(3):1187-1192.
  • 7[7]James H M,John B T.Detectors for discrete-time signals in non-Gaussian noise[J].IEEE Trans on information Theory,1972,18(2):241-250.
  • 8[8]Kamran S,Alberto L G.Estimation of shape parameter for generalized Gaussian distribution in subband decompositions of video[J].IEEE Trans on circuits and systems for video technology.1995,5 (1):52 -56.
  • 9朱培民,俞国柱,王家映.地震信号的高斯性及其检测[J].中国地球物理年会会刊,2001,(88).
  • 10伯晓晨,沈林成,常文森,牛轶峰.DCT变换域盲图像水印的自适应检测[J].计算机研究与发展,2002,39(4):502-510. 被引量:12

二级参考文献8

  • 1[2]A Swami,J M Mendal.Cumulant-based approach to harmonic retrieval problem[A].Proceeding of 1988 IEEE ICASSP-88[C].USA:IEEE,1988.2264-2267.
  • 2[3]Xianda Zhang,Yingchang Liang,Yanda Li,A hybrid approach to harmonic retrieval in non-gaussian ARMA noise[J].IEEE Trans,1994,IT-40(4):1220-1226.
  • 3[4]B Besson,F Castanie.On estimating the frequency of a sinusoid in auto-regressive multiplicative noise[J].Signal Processing,1993,30(2):65-83.
  • 4[5]O Besson,P Stoica.Sinusoidal signals with random amplitude:Least-squares estimatiors and their statistical analysis[J].IEEE Trans,Signal Processing,1995,43(11):2733-2744.
  • 5[6]A Swami.Multiplicative noise medels:Parameter estimation using cumulants[J].Signal Processing,1994,36(4):355-373.
  • 6[7]G Zhou,G B Giannakis.On estimating random amplitude modulated harmonics using higher-order spectra[J].IEEE Journal of Oceanic Engr,1994,19(4):529-539.
  • 7[10]I Daubechies.Ten Lectures on Wavelets[M].Philadelphia:CBMS,61,SIAM,1992.
  • 8[11]Stephane Mallat.A wavelet Tour of Signal Processing[M].Academic Press,1999.

共引文献20

同被引文献349

引证文献38

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部