期刊文献+

运动目标检测算法的探讨 被引量:121

The Methods for Moving Object Detection
在线阅读 下载PDF
导出
摘要 运动目标检测是实现目标跟踪、交通监控、行为分析等任务的基础。但由于运动目标的提取易受到背景、光线变化、阴影、运动速度等因素的影响而造成失败,所以如何更好的实现运动目标检测具有相当重要的意义。该文从运动目标检测的基本概念出发,探讨了运动目标检测的广泛用途、目前所面临的主要问题与困难、实现运动目标检测算法的基本分类,并结合近几年公开发表的一些算法与实现对当前主流运动目标检测实现方法的基本思想和最新进展进行了分类综述,讨论了各类方法的主要优缺点,并展望了该领域未来的发展趋势。 Moving object detection is the basis for object tracking, traffic surveillance and behavior analysis. Due to the impact caused by background, shadow , change of illumination, moving speed and so on, moving object detection fails easily. So it is import ant to detect moving object better. This article discusses how to use moving object detection widely, the problems and difficulties faced and the basic categories of approaches etc. main merits and shortages of all approaches are discussed, and the development trend of the area is forecasted.
出处 《计算机仿真》 CSCD 2006年第10期221-226,共6页 Computer Simulation
关键词 运动目标检测 相邻帧差法 光流法 背景减法 统计学习法 Moving object detection Temporal differencing Optical flow Background subtraction Statistical learning - based approaches
  • 相关文献

参考文献20

  • 1A Lipton, H Fujiyoshi and R Patil. Moving Target Classification and Tracking from Real - Time Video [ C]. Proc. of the 1998 DARPA Image Understanding Workshop (IUW'98), 1998.
  • 2Changick Kim, Jenq - Neng Hwang. Fast and automatic video object segmentation and tracking for content - based application[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(2) : 122 - 129.
  • 3J Barron, D Fleet and S Beauchemin. Performance of optical flow techniques[ J]. International Journal of Computer Vision,1994, 12(1), 42 - 77.
  • 4Eun - Jung Holden, Robyn Owens. Segmenting Occluded Objects Using a Motion Snake[ C] . Asian Conference on Computer Vision (ACCV) 2004, SIV - 3.
  • 5Alexei A Efros, Alexander C Berg, Greg Mori, Jitendra Malik.Recognizing Action at a Distance [ C ]. International Conference on Computer Vision (ICCV) , 2003.
  • 6C Wen, A Azarbayejani, T Darrell and A Pentland. Pfinder:Real -Time Tracking of the Human Body. [J]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1997, 19(7).
  • 7W E L Grimson, C Stauffer, R Romano and L Lee. Using Adaptive Tracking to Classify and Monitor Activities in a Site[C]. Proc. IEEE conf. Computer Vision and Pattern Recognition(CVPR) , 1998.
  • 8Robert T Collins, Alan J Lipton, Takeo Kanade. Special Section on Video Surveillance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2000, 22(8) : 745- 746.
  • 9Paul Viola, Michael J Jones, Daniel Snow. Detecting Pedestrians Using Patterns of Motion and Appearance [C].International Conference on Computer Vision (ICCV) , 2003.
  • 10Eric Hayman, Jan - Olof Eklundh. Statistical Background Subtraction for a Mobile Observer[ C ]. International Conference on Computer Vision (ICCV), 2003.

同被引文献860

引证文献121

二级引证文献856

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部