期刊文献+

Three-dimensional Simulation of Gas/Solid Flow in Spout-fluid Beds with Kinetic Theory of Granular Flow 被引量:8

Three-dimensional Simulation of Gas/Solid Flow in Spout-fluid Beds with Kinetic Theory of Granular Flow
在线阅读 下载PDF
导出
摘要 A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles. A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of 1m and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Be-sides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macro-scopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期611-617,共7页 中国化学工程学报(英文版)
基金 Supported by the National Key Program of Basic Research in China (No.2004CB217702, No.2005CB221202, No.2006CB20030201) and the National Natural Science Foundation of China (No.20590367, No.50676021, No.50606006).
关键词 gas/solid flow CFD Eulerian multiphase model kinetic theory of granular flow spout-fluid bed 颗粒流运动论 喷动流化床 气固流动行 三维模拟
  • 相关文献

参考文献2

二级参考文献6

共引文献12

同被引文献44

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部