期刊文献+

SVM在金属塑性成形摩擦系数预测中的应用研究 被引量:2

The Implicational Research on the Prediction of Friction Coefficient in Metal Plastic Forming Process Based on SVM
在线阅读 下载PDF
导出
摘要 针对金属塑性成形过程中摩擦系数较难确定的客观情况,提出一种基于支持向量机的能够快速预测摩擦系数的方法。利用支持向量机建立了金属塑性成形中润滑油、模具表面粗糙度、滑动速度和金属材料表面粗糙度与摩擦系数的支持向量机模型,实验结果表明这种模型具有很好的准确度和预测性,为摩擦学设计和程序化计算和分析提供了一种方便且有效的工具。 Directing at the circumstance that the friction coefficient of the metal plastic forming process is difficult to confirm. A new method is proposed based on support vector machine, which can quickly predict the friction coefficient. The support vector machine is used to construct the support vector machine model of the lubricating oil in metal plastic forming process, the surface roughness of the die, the gliding rate, the surface roughness and friction of the metal materials. The experimental results show that this model has excellent accuracy and prophetical and provide a convenient and effective tool for the design of tribology and the programmable computing.
出处 《科学技术与工程》 2006年第22期3572-3574,3608,共4页 Science Technology and Engineering
关键词 支持向量机 金属塑性成形 摩擦系数 预测 SVM metal plastic forming process friction coefficient prediction
  • 相关文献

参考文献6

  • 1[2]Vapnik V N,著,张学工,译.统计学习理论的本质.北京:清华大学出版社,2000
  • 2[3]Vapnik V N.Statistical learning theory.New York:John Wiley &Sons,1998
  • 3[4]Vapnik V N,Levin E,Le Cun Y.Measuring the VC-dimension of a learning machine.Nearal Computation,1994; (6):851-876
  • 4[6]Lanzona J M,Cardew-Hall M J,Hodgson P D.Charac-terising frictional behaviour in sheet metal forming.Journal of Materials Processing Technology,1998; 81:251-256
  • 5周敬勇,黄菊花,杨国泰,刘守国.基于神经网络的板料拉深成形摩擦系数预测[J].南昌大学学报(工科版),2005,27(1):9-11. 被引量:2
  • 6许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132

二级参考文献29

  • 1[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 2[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 3[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 4[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 5[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 6[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 7[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 8[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 9[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10[10]Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5) :1207-1245.

共引文献132

同被引文献14

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部