期刊文献+

计算旋转Harr型特征的积分图像算法改进 被引量:8

An Improved Algorithm of Integral Image for Computing Rotated Harr-Like Features
在线阅读 下载PDF
导出
摘要 通过改进计算旋转Harr型特征的积分图像算法,降低了其计算复杂度,实现了遍历原图像一次即可获得图像直立矩形窗口和45旋转矩形窗口的积分图像,实验证明算法的改进是有效的。 An improved algorithm of integral image for computing rotated Harr- like features is proposed. Not only the calculating complcxity is reduced, but also the integral images of upright windows and 45° rotated windows can be gained by scarching through the origin image once. Experimental results demonstrate the efficiency of this improved algorithm.
出处 《计算机技术与发展》 2006年第11期146-147,181,共3页 Computer Technology and Development
基金 广西教育厅面上项目(桂教科研[2004]20号) 玉林师范学院重点科研资助项目(05DWX16) 玉林师范学院科研资助项目(05YBWX23)
关键词 Harr型特征 积分图像 算法改进 人脸检测 Hart- like features integral image improved algorithm face detection
  • 相关文献

参考文献5

  • 1Crow F.Summed-area tables for texture mapping[J].SIGGRAPH,1984,18 (3):207-212.
  • 2Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C]//In Proc.of the IEEE Computer Vision and Pattern Recognition.Cambridge,Britain:[s.n.],2001:511-518.
  • 3Lienhart R,Kuranov A,Pisarevsky V.Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection[C]//In Proc.25th German Pattern Recognition Symposium.Magdeburg,Germany:[s.n.],2003:297-304.
  • 4Lienhart R,Maydt J.An Extended Set of Haar-like Features for Rapid Object Detection[C]//In Proc.of the IEEE Conf.on Image Processing.New York,USA:[s.n.],2002:155-162.
  • 5武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66

二级参考文献13

  • 1B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.
  • 2H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999.
  • 3R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53.
  • 4H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000.
  • 5E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997.
  • 6V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999.
  • 7P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001.
  • 8Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156.
  • 9R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336.
  • 10Y. Li, S. Gong, H. Liddell. Support vector regression and classification based multi-view face detection and recognition.IEEE Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000.

共引文献65

同被引文献65

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部