期刊文献+

风险资产组合均值-CVaR模型的算法分析 被引量:6

Minimum modeling of mean-CVaR arithmetic analysis
在线阅读 下载PDF
导出
摘要 CVaR是指损失超过VaR的条件均值,反映了损失超过VaR时可能遭受的平均损失水平,它克服了VaR的非一致性、非凸性等不足.本文基于CVaR风险计量技术,分析了风险证券的投资收益率在服从正态分布下的风险资产组合均值-CVaR模型,给出了该风险资产组合有解的条件,以及在该条件满足下,最小均值-CVaR组合的投资比例解析形式和最小值. Conditional Value- at- Risk (CVaR) is known as mean excess loss, it is the conditional expectation of losses above that amount VaR. As an alternative measure of risk, CVaR is known to have better properties than VaR, such as subadditivity and convexity. Based on the normal assumption for the distribution of financial returns, here analyze the minimum modeling of mean - CVaR, and evaluate when the model has efficient solution , and when this condition is satisfied, the formula of efficient frontier of portfolio and minimum value are presented.
作者 李婷 张卫国
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2006年第6期4-7,共4页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(70571024)
关键词 风险投资 CVAR 最小解 risk - investment CVaR minimum value
  • 相关文献

参考文献4

二级参考文献5

  • 1李楚霖,数理统计与管理,1994年,3期
  • 2张忠桢,预测,1994年,2期
  • 3Alexander G.J.,Baptista A.M.Economic implications of using a Mean-VaR model for portfolio selection:a comparison with Mean-Variance analysis[R].Working Paper.University of Minnesota,2000.
  • 4Huang C,Litzenberger R.Foundation for financial economics[M].N J:Prentice-Hall,1988,66~67.
  • 5刘小茂,李楚霖,王建华.风险资产组合的均值—CVaR有效前沿(Ⅰ)[J].管理工程学报,2003,17(1):29-33. 被引量:53

共引文献46

同被引文献32

  • 1唐林俊,杨虎.深沪股市收益率分布特征的统计分析[J].数理统计与管理,2004,23(5):1-4. 被引量:18
  • 2曲圣宁,田新时.投资组合风险管理中VaR模型的缺陷以及CVaR模型研究[J].统计与决策,2005,21(05X):18-20. 被引量:17
  • 3张天永,彭隆泽.期权价格的拟Monte Carlo仿真计算[J].重庆建筑大学学报,2005,27(4):111-114. 被引量:1
  • 4王宏梅.风险度量中的拟蒙特卡罗方法.中国水运,2006,6(11).
  • 5Carlo A,Tasche D.Expected Shortfall : a Natural Coherent Alternative to Value at Risk[C].Working Paper,ltalian Association for Financial Risk Management,2001.
  • 6H MARKOWITZ. Portfolio selection[J]. Journal of Finance 1952, 3(7):77- 91.
  • 7P L CHENG. Optimum bond portfolio selection[J]. Manage ment Science, 1962, 8(4): 490-499.
  • 8J PHILIPPE. Value at risk[M].New York: The Mc-Grraw Hill Companies, Inc, 1977.
  • 9R T ROCKAFELLAR, S URYASEV. Optimization of eondi tionalValue-at risk[J]. The Journal of Risk , 2000, 2(3): 21 -41.
  • 10C G PFLUG. Some remarks on the value-at- risk and the conditional Value-at risk[C]//Probabilistic Constrained Optimization: Methodology and Applications. Dordrecht :Kluwer Academic Publishers, 2000 : 134 - 145.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部