期刊文献+

一类p-Laplacian方程混合边值问题正解的存在性 被引量:3

Existence of Positive Solutions for Mixed Boundary Value Problems of p-Laplacian Equations
在线阅读 下载PDF
导出
摘要 本文利用范数形式的锥拉伸与锥压缩不动点定理,讨论了一类p-Laplacian方程混合边值问题,获得了正解的存在性定理。 in this paper, the existence of positive solutions for mixed boundary value problems of p-Laplacian equations is studied by using the fixed-point theorem of cone expansion-compression type with norm. Several sufficient conditions are established.
作者 翟成波
出处 《工程数学学报》 CSCD 北大核心 2006年第6期1053-1057,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10371068)
关键词 P-LAPLACIAN算子 不动点 正解 p-Laplacian operator fixed point cone positive solution
  • 相关文献

参考文献4

二级参考文献13

  • 1Sunwei Ping, Gewei Gao. The existence of positive solutions for a class of nonlinear boundary value problem[J]. Acta Math Sinica, 2001, 4: 577--580.
  • 2O'Regan D. Some general existence principles and results for (φp(y'))' = q(t)f(t, y, y'), 0 < t < 1 Siam['J]. J Math Anal, 1993. 648--668.
  • 3Guo D. Nonlinear Functional Analysis[M]. Ji'nan: Shandong Science and Technology Press, 2002.
  • 4Zhang Y,J Math Anal Appl,1994年,185卷,215页
  • 5Wang J S W,SIAM Rev,1975年,17卷,339页
  • 6Chen Shaozhu,J Math Anal Appl,1995年,195卷,2期,449页
  • 7Zhang Y,J Math Anal Appl,1994年,185卷,1期,215页
  • 8Zhao Zengqin,Nonlinear Analysis Theory Methods Applications,1994年,23卷,6期,755页
  • 9Wong Fuhsiang,Appl Math Lett,1999年,12卷,11页
  • 10Henderson J,J Math Anal Appl,1997年,208卷,252页

共引文献70

同被引文献22

  • 1刘斌.具p-Laplacian算子型奇异方程组边值问题正解的存在性[J].数学学报(中文版),2005,48(1):35-50. 被引量:13
  • 2张晓燕,孙经先.一维奇异p-Laplacian方程多解的存在性[J].数学物理学报(A辑),2006,26(1):143-149. 被引量:17
  • 3陈顺清.三阶p-Laplacian奇异边值问题多重正解的存在性[J].数学物理学报(A辑),2006,26(5):794-800. 被引量:7
  • 4翟成波,郭春梅.A NOVEL FIXED POINT THEOREM AND ITS APPLICATIONS[J].Acta Mathematica Scientia,2007,27(2):413-420. 被引量:2
  • 5DIAZ J,THELIN F DE. On a nonlinear parabolic problem arising in some models related to turbulent flows[J]. SIAM J Math/Anal, 1994,25 (4) :1085-1111.
  • 6ORUGANTI S, SHI J, SHIVAJI R. Diffusive logistic equation with constant yield harvesting, Ⅰ: Steady-states [ J ]. Trans Amer Math Soc,2002,354(9) :3601-3619.
  • 7Oruganti S, Shi J, Shivaji R. Logistic equation with p-Laplacian and constant yield harvesting [ J ]. Abstr Appl Anal, 2004 ( 9 ) : 723 -727.
  • 8GRUGANTI R, RAPPAZ J. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology[ J ]. Math Model Numer Anal,2003,37 ( 1 ) : 175-186.
  • 9LY I, SECK D. Isoperimetric inequality for an interior free boundary problem with p-Laplacian operator[ J ], Electron J Differential Equations ,2004,109 : 1-12.
  • 10EVANS L, WANG G B. Differential equations methods for the Monge-Kantorovich mass transfer problem [ J ]. Mem Amer Math Soc 1999,137:653.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部