摘要
This paper studies the load-balancing algorithm and quality of service (QoS) control mechanism in a 320Gb/s switch system, which incorporates four packet-level parallel switch planes. Eight priorities for both unicast and multicast traffic are implemented, and the highest priority with strict QoS guarantee is designed for real-time traffic. Through performance analysis under multi-prlorlty burst traffic, we demonstrate that the load-balancing algorithm is efficient, and the switch system not only provides excellent performance to real-time traffic, but also efficiently allocates bandwidth among other traffic of lower priorities. As a result, this parallel switch system is more scalable towards next generation core routers with QoS guarantee, as well as ensures in-order delivery of IP packets.
This paper studies the load-balancing algorithm and quality of service (QoS) control mechanism in a 320Gb/s switch system, which incorporates four packet-level parallel switch planes. Eight priorities for both unicast and multicast traffic are implemented, and the highest priority with strict QoS guarantee is designed for real-time traffic. Through performance analysis under multi-prlorlty burst traffic, we demonstrate that the load-balancing algorithm is efficient, and the switch system not only provides excellent performance to real-time traffic, but also efficiently allocates bandwidth among other traffic of lower priorities. As a result, this parallel switch system is more scalable towards next generation core routers with QoS guarantee, as well as ensures in-order delivery of IP packets.
基金
Supported by the National Natural Science Foundation of China under Grant Nos. 60573121 and 60373007, the China/Ireland Science and Technology Collaboration Research Fund (CI-2003-02), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040003048).