摘要
根据分形几何理论的基本概念,就无序分形多孔介质孔隙率φ和渗透率K与多孔介质结构分数维数Df的关系进行了推导,利用Sierpinski固相分形体(Solid mass fractal)与孔相分形体(Pore mass fractal)概念对分形多孔介质微结构特征、孔隙累积数量-尺寸分布和孔隙率φ等参数及其物理关系给予了详细论述,定量地分析和讨论了基于不同模型的渗透率-分形维数关系与它们的差异。
According to the fundamental notions of the fractal geometry, the rigorous relationships between the fractal dimensionality and the microstmctural parameters including porosity as well as permeability in random fractal porous media are established in the present paper. The physical significances of microstmctural characteristics, the cumulative pore number-size distribution and the porosity formula of the fractal porous media are discussed in detail using the model of the Sierpinski solid and the pore mass fractals. In addition, the permeability-fractal dimeasionality relationships built up on two different models and their differences are quantitatively analyzed.
出处
《水科学进展》
EI
CAS
CSCD
北大核心
2006年第6期812-817,共6页
Advances in Water Science
基金
江苏省自然科学基金资助项目(BK2006182
2002)
南京工业大学博士论文创新基金(BSCX200601)~~
关键词
分形多孔介质
孔隙率
渗透率
分维关系
fractal porous media
porosity
permeability
fractal dimensionality dependence