期刊文献+

网络科学的理论模型探索及其进展 被引量:26

Exploring Theoretical Model of Network Science and Research Progresses
在线阅读 下载PDF
导出
摘要 简要评述了复杂网络分类和研究概况,着重概述了近年来本研究项目在网络科学的理论模型方面的探索及其进展。提出和探索了若干模型:和谐统一的混合择优模型,大统一混合网络模型,量子信息网络模型,纳米相干网络模型,局域世界演化模型,非局域连接模型,社区网络模型,属性连接网络模型,含权科学家合作模型,同步最优网络模型,以及广义同步和集团同步等问题。 Exploring theoretical model of complex networks is one of the most challenging subjects in network science. In this article, after giving a brief review of classification of complex networks, we emphasize our recent main advances in theoretical model of complex networks, supported by the key project of NSFC. Our proposed models include: harmonious unifying hybrid preferential model, large unifying hyhrid network model, quantum information network, Nano-interferenee network model, local world evolution model, non-local connective model, community network model, property connective model, weighted scientist cooperation model, synchronization optimization model, generalizcd synchronization and clustering synchronization.
作者 方锦清
出处 《科技导报》 CAS CSCD 2006年第12期67-72,共6页 Science & Technology Review
基金 国家自然科学基金委重点资助项目(70431002)
关键词 复杂网络理论模型 和谐统一的混合择优模型 大统一混合网络模型 无权网络和含权网络 小世界效应 无标度特性 theoretical model of complex networks harmonious unifying hybrid preferential model large unifying hybrid network model: un-weighted and weighted network model small world effects scale-free properties
  • 相关文献

参考文献8

二级参考文献101

  • 1刘曾荣.用结构适应实现不同系统之间的完全同步[J].应用数学与计算数学学报,2004,18(2):68-72. 被引量:6
  • 2[1]Albert R,Barabasi A L. Statistical mechnics of complex networks[ J]. Phys Rev Mod,2002,74: 47 -97.
  • 3[3]Milgram S. The small world problem [ J ]. Psychol Today, 1967,2:60 - 67.
  • 4[4]Watts D J, Strogatz S H. Collective dynamics of‘small-world’networks[J]. Nature,1998,393:440 -442.
  • 5[5]Newman M E J, Watts D J. Renormalization group analysis of the small-world network model [ J]. Phys Rev E, 1999,263:341 - 346.
  • 6[6]Monasson R. Diffusion,localization and dispersion relations on‘small-world’lattices[J]. Phys Eur J B,1999,12:555 -567.
  • 7[7]Serra R, Villani M, Agostini L. A small-world network where all nodes have the same connectivity ,with application to the dynamics of Boolean interacting automata [ J ]. Complex Systems ,2005,15 (2).
  • 8[8]Newman M E J. The structure and function of complex networks[ J]. Phys Adv,2002,51:1 079 -1 187.
  • 9[9]Albert R, Barabasi A L. Statistical mechanics of complex networks [ J ]. Phys Rev Mod,2002,74:47 -97.
  • 10[10]Li Y, Fang J Q, Lin Q, et al. Small world properties generated of a new method[J]. To be submitted. 2005.

共引文献55

同被引文献353

引证文献26

二级引证文献384

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部