摘要
从N-S方程出发,推导了螺旋槽内稳态微尺度流动场的非线性雷诺方程.应用PH线性化方法,将非线性偏微分方程转化为线性偏微分方程,引入复函数将复常数偏微分方程变为两个线性实常数微分方程组,并采用小参数迭代法进行求解,近似求得了螺旋槽内气体动压分布的解析解.与相应的实验数据对比,计算结果和实验结果基本符合,为有类似几何参数的干气密封的优化设计提供了参考.
Based on the N-S equation, a nonlinear Reynolds equation for a steady-state micro-scale flow field was derived. Using PH linearization, the nonlinear partial differential equation was transformed into linear partial differential equation, and then, by introducing a complex function, it was further transformed into a set of two linear differential equations. The problem was solved by using small parameter iterative method, and the analytic solution of distribution of gas dynamic pressure in the spiral groove was roughly obtained. The calculation result agreed well with corresponding experimental one, providing useful reference for optimization design of gas seals with similar geometric parameters.
出处
《兰州理工大学学报》
CAS
北大核心
2006年第6期72-75,共4页
Journal of Lanzhou University of Technology
基金
甘肃省自然科学基金(3ZS061-A25-051)
甘肃省教育技术基金(0615-01)
关键词
螺旋槽
干气密封
雷诺方程
PH线性化
迭代法
动压计算
.spiral groove
gas seals
Reynolds equation
PH linearization
iterative method
dynamic pressure calculation