期刊文献+

一种基于多分辨分析的简化的分裂-合并图像分割算法 被引量:3

A simplified split-merge image segmentation method based on multi-resolution analysis
在线阅读 下载PDF
导出
摘要 为了减少分裂-合并算法的计算复杂性,提出了一种基于多分辨率分析的分裂-合并简化算法.首先,将原始图像用多分辨的形式分层表示,对最低层分辨率的图像用简化的分裂-合并算法进行图像分割,同时用该层的边缘信息对分割结果进行优化,得到该层的分割图像;然后,用直接影射的方法将低分辨率的分割图像映射到高分辨率空间中,并用相应的边缘信息进行优化,直到在原始分辨率空间完成上述工作,得到最终的分割结果.试验证明,所提算法简单有效,较好地解决了分裂-合并算法计算复杂的问题. In order to induce the computation of split-merge algorithm, a new method was presented for image segmentation of simplified split-merge algorithm based on multi-resolution. First, the initial image to be segmented is described in the form of multi-resolution, then the lowest resolution level image is segmented by simplified split-merge method, and at the same time the segment result is refined by the edge information of the image on the same resolution level, after these the segmented image on this level is obtained. Then, the segmented image on the lower level is projected into a higher level by directly project method, and the project result is also refined by the edge information of the image on the corresponding level. Once the segmentation and refining finish on the initial resolution level, the segment work will be completed. Experiments have shown that our proposed method is simple and effective, it can solve the computation problems of split-merge method.
出处 《长沙理工大学学报(自然科学版)》 CAS 2006年第4期77-80,共4页 Journal of Changsha University of Science and Technology:Natural Science
基金 湖南省教育厅科研资助项目(03C083)
关键词 多分辨分析 分裂-合并算法 图像分割 小波变换 multi-resolution analysis split-merge algorithm image segmentation wavelet transformation
  • 相关文献

参考文献6

  • 1[1]Haralick R M,Shapiro L G.Survey:image segmentation techniques[ J ].Comput Vis Graph Image Process,1985,(29):100-132.
  • 2[2]Hijjatolesla mi S A,Kittler J.Region growing:a new approach[J].IEEE Trans Image Processing,1998,(7):1079-1084.
  • 3[3]Conzalez R C,Woods R E.Digital image processing (Second Ed)[M].USA:Prestice Hall,2001.
  • 4[4]Pal N R,Pal D K.A new review on image segmentation techniques[ J ].Patt Recognit,1993,34 (12):2497-2513.
  • 5[5]Jong-Bae Kim,Hang-Joon Kim.Multiresolution-based watersheds for efficient image segmentation[ J ].Pattern Recognition Letters,2003,(24):473-488.
  • 6王晓峰.CBIR系统中的图象语义分割技术[J].计算机工程与应用,2002,38(21):114-117. 被引量:6

二级参考文献5

  • 1DavidSinclair.Voronoiseededcolorimagesegmentation犤R犦[]..1999
  • 2StevenA.Shafer,SegmentationandInterpretationofMulti-coloredObjectsWithHighlights犤J犦[].ComputerVisionandImageUnderstanding.2000
  • 3EJPauwels,GFrederix.FindingSalientRegionsinImages:Non-Para-metricClusteringforImageSegmentationandGrouping犤J犦[].ComputerVisionandImageUnderstanding.1999
  • 4ChadCarson,SergeBelongie.Blobworld:ImagesegmentationusingEx-pectation-Maximizationanditsapplicationtoimagequerying犤R犦[]..1999
  • 5HieuTNguyen,MarcelWorring.Watersnakes:energy-drivenwatershedsegmentation犤R犦[]..2000

共引文献5

同被引文献22

  • 1周璐璐,李金,李想,于虹.基于边缘检测与分裂合并的多区域分割研究[J].应用科技,2006,33(1):39-42. 被引量:3
  • 2蔡小琼,贺赛先.一种快速自适应边缘提取方法的研究[J].计算机测量与控制,2006,14(3):307-309. 被引量:6
  • 3Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing [ M]. Second edition, Beijing: Publishing House of Electronics Industry,2002.
  • 4VLADIMIR P. Multilevel image fusion[C].Proc of SPIE. 2003 : 679-688.
  • 5Li Judong, Ge Yu, OGUNBNA P. An efficient iteractive algorithm for image thresholding[J].Pattern Recognition Let- ters,2008,29(9): 1311-1316.
  • 6HOROWITZ S L. Picture segmentation by a tree traversalalgorithm[J]. Journal of the ACM,1976,23(2):368-388.
  • 7BARRA V. Robust segmentation and analysis of DNA microarray spots using an adaptative split and merge algo- rithm[J]. Computer Methods and Programs in Biomedicine, 2006,81 (2): 174-180.
  • 8WU X. Adaptive Split-and-Merge segmentation based on piecewise least-square approximations[M].IEEE Transaction- son Pattern Analysis and Machine Intelligence, 1993:808-815.
  • 9MERIGOT A. Revisiting image splitting[C]. Proceedings of IEEE International Conference on Computer Vision.[S.1.]: IEEE Computer Society, 2001:517-524.
  • 10EVANS A N, LIU X U.Amorphological gradient approach to color edge detetion[J].IEEE Transactions.on Image Processing, 2006,15(6): 1454-1463.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部