摘要
研究了一般抛物方程的一种区域分解差分算法,在内边界点上采用小时间步长Δt,空间上以步长-h进行J计算,提高了整体的计算精度.给出了一、二维两种情形下的算法和误差估计,并用数值实验证明了结论.
The domain decomposition finite difference algorithm is dealt with for parabolic problems with variable coefficient. The basic procedure is to define explicit difference schemes at the interface point with smaller rune step ^-△t = △t/J, (J is a positive integer. ) and larger space step h^-, for improving the total aeeuracy. Algorithm and error estimates in one and two space dimensions are derived. At last, a numerical experiment is presented to eonfirm the conclusion.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2006年第6期51-56,60,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10471079)
教育部博士点基金资助项目(20020422019)
关键词
变系数
抛物方程
区域分解算法
有限差分
并行计算
variable coefficient
parabolic equation
domain decomposition algorithm
finite difference
parallel computation