期刊文献+

分形理论应用中无标度区自动识别方法 被引量:12

FRACTAL SCALELESS BAND AUTOMATIC IDENTIFICATION FOR FRACTAL THEORY APPLICATION
在线阅读 下载PDF
导出
摘要 为提高分形维数的计算精度和效率,减少分形无标度区确定中的主观因素,基于分形维数计算中的关联积分算法,综合利用具体时间序列和拟合点数等信息,建立故障诊断中分形无标度区的一种自动识别方法。运用该方法对所测得的两台航空发动机在不同工况、不同转速下的振动数据进行分析计算,给出分形无标度区的上、下限和关联维数,并与一般方法的计算结果进行对比。计算结果表明,无论实测时间序列无标度区跨度大小如何变化,应用本方法均能很好地识别,区间内曲线的线性度较好,且该自动识别方法简单、高效、准确、适用性强。需指出的是,该方法确定的无标度区附近的值有可能属于无标度区,故它对无标度区的选择趋于保守。 In order to improve the precision and efficiency for fractal dimension calculation and reduce manmade influence, a technique is proposed for fractal scaleless band automatic identification. The method is based on the study of the correlation integral algorithm and the information of time series. The number of fit points was also considered. Firstly the fractal scaleless's probable range is estimated.Then it is exactly confirmed. Finally regression significance test of Inr-InCq(r) curve is made.The method was applied to analyze two aero engine's vibration time series, which were tested in different operation conditions and different rotate speeds. Meanwhile the result was compared with the general calculation results. It shows that the method is effectual no matter how much scaleless band is and the linearity of curves is better in the scaleless band. The method is more objective, precise, simple and applicable, however sometimes the fractal scaleless band may be shrunk by it.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第12期106-109,共4页 Journal of Mechanical Engineering
基金 学院博士研究基金。
关键词 分形无标度区 关联积分 相空间重构 故障诊断 Fractal scaleless band Correlation integral Phase space reconstruction Fault diagnose
  • 相关文献

参考文献10

  • 1SAUER T,YARKE J A,CUSDAGLI M.Embedology[J].J.Stat.Phys.,1991,65:579-616.
  • 2ABARBANE H D I,BROWN R,SIDOROWICH J J,et al.The analysis of observed data in physical systems[J].Rev.Mod.Phy.,1993,65(4):1331-1392.
  • 3KIM H S,EYKHOLT R,SALAS J D.Nolinear dynamics,delay times and embedding windows[J].Physica D,1999,127:48-60.
  • 4党建武,施怡,黄建国.分形研究中无标度区的计算机识别[J].计算机工程与应用,2003,39(12):25-27. 被引量:17
  • 5PACKARD N H,CRUTCHFIELD J P,FARMER J D,et al.Geometry from a time series[J].Physica Review Letter,1989,45(9):712-716.
  • 6TAKENS F.Detecting strange attractors in turbulence[C]//Rand D A,Young L S.Dynamical Systems and Turbulence.Berlin:Spring-Verlag,1981:366-381.
  • 7马红光,李夕海,王国华,韩崇昭,许剑锋,朱小菲.相空间重构中嵌入维和时间延迟的选择[J].西安交通大学学报,2004,38(4):335-338. 被引量:63
  • 8胡刚,朱世华,谢波.多径衰落信号的多重分形谱[J].西安交通大学学报,2001,35(2):137-141. 被引量:6
  • 9孙夏,吴自勤,皇军.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003.
  • 10马逢时 何良材 余明书 等.应用概率统计[M].北京:高等教育出版社,1989.249-250.

二级参考文献18

  • 1李厚强 汪富泉.分形理论及基在分子科学中的应用[M].北京:科学出版社,1997..
  • 2Hemy D I AbarbaneLChaos in ocean ambient noise[J].Acoust Soc Am, 1996;99(3) : 1527-1539.
  • 3Theodore W Frison,Henry D I Abarbanel et al.Nonlinear analysis of environment distortions wave signals in the ocean[J].Pro of the IEEE, J Acoust See Am,1996;99(1):139-146.
  • 4Donald L Turcotte.Fractals in Geology and C, eophysics[J].Pure and Applied Geophysics, 1989 ; 131.
  • 5Wornell G W,Oppenheim A V.Estimation of fractal of Signal from Noisy Measurement using Wavelets[J].IEEE T-SP,1992;40(3).
  • 6Lo T et al.Fractal Character of Sea-Scattered Signal and Detection of Sea-Sudace targets[J].IEEE Proceeding, 1993 ;40(4).
  • 7Eckmann J P,Ruelle DFundamental Limitation For Estimating (Preprint) [M].Cambridge :Cambridge University Press, 1990.
  • 8Naokazu Yokoza.Fractal-based Analysis and Interpolation of 3D Natural Sudace shapes and their Applications to Terrain Modeling[J].Computer Vision,Graphics and Image Processing,1989;46.
  • 9Petros Maragos,Fang-Kuo Sun.Measuring the fractal Dimension of Signals:Morphological Covers and Itemtive Optimization[J].IEEE Trans on SP. 1993;41.
  • 10Grsssberter P,Procaccia I.Dimension and Entropy of Strange Attractors from a Fluctuating Dynamic Approach[J].Physics,1984;13:34-54.

共引文献102

同被引文献111

引证文献12

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部