期刊文献+

基于Marginalized粒子滤波的卫星姿态估计算法 被引量:6

Satellite attitude estimation based on marginalized particle filter
在线阅读 下载PDF
导出
摘要 针对具有矢量观测的卫星姿态估计问题,提出一种基于Marginalized粒子滤波(MPF)的算法.采用Rao-Blackwellization技术,将卫星模型状态向量中的线性状态部分(陀螺漂移)和非线性状态部分(卫星姿态)分开处理,从而使得估计的方差降低,以较少的运算量获得较好的估计效果.通过引入解决含等式约束条件的估计问题方法,保证了姿态四元数的归一化.将所提出的方法应用于某型号卫星,仿真验证了用该算法处理卫星姿态估计问题的优越性. An algorithm based on marginalized particle filters (MPF) is presented to solve satellite attitude and gyro bias estimation problem with vector observations. By marginalizing out the state appearing linearly in satellite model, attitude vector is approximated by a set of particles and estimated using particle filter, while estimation of gyro bias is obtained for each one of attitude particles by applying the Kalman filter, which is associated with each particle in order to reduce the size of the state space and computational burden. The method of estimation with equation constraint is employed due to the normality constraint of attitude quaternion. The numerical simulation of a rigid satellite with gyro and three-axis-magnetometers, shows the superiorty of the proposed algorithm in coping with the nonlinearity of model.
出处 《控制与决策》 EI CSCD 北大核心 2007年第1期39-44,共6页 Control and Decision
基金 国家高技术研究发展计划项目(2004AA735080) 高校博士学科点专项科研基金项目(20050213010)
关键词 姿态估计 粒予滤波 卫星 非线性滤波 Attitude estimation Particle filter Satellite Nonlinear filter
  • 相关文献

参考文献14

  • 1Lefferts E J,Markley F L,Shuster M D.Kalman filtering for spacecraft attitude estimation[J].J of Guidance,1982,5(5):417-429.
  • 2Psiaki M L,Martel Francois,Pal P K.Three-axis attitude determination via Kalman filtering of magnetometer data[J].J of Guidance,1990,13(3):506-514.
  • 3Crassidis J L,Markley F L.Unscented filtering for spacecraft attitude estimation[J].J of Guidance and Dynamics,2003,26(4):536-542.
  • 4西蒙赫金.自适应滤波器原理[M].郑宝玉,等译.第4版.北京:电子工业出版社,2003:613-617.
  • 5Wan E A,Van Der Merwe R.Kalman filtering and neural network[M].New York:John Wiley,2001.
  • 6Oshman Y,Carmi A.Spacecraft attitude estimation from vector observations using a fast particle filter[C].Proc of 14th AAS/AIAA Space Flight Mechanics Conf.Hawaii:AAS,2004.
  • 7Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-gaussian Bayesian state estimation[J].IEE Proc on Radar and Signal Processing,1993,140(2):107-113.
  • 8Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-185.
  • 9Doucet A,De Freitas N,Gordon N.Sequential monte carlo methods in practice[C].Statistics for Engineering and Information Science.New York:Springer,2001.
  • 10Thomas Schon,Fredrik Gustafsson,Per-Johan Nordlund.Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Trans on Signal Processing,2005,53(7):2279-2289.

同被引文献63

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部