期刊文献+

基于混沌变异的小生境粒子群算法 被引量:50

Niche particle swarm optimization combined with chaotic mutation
在线阅读 下载PDF
导出
摘要 针对粒子群算法早熟收敛和搜索精度低的问题,提出了基于混沌变异的小生境粒子群算法(NCPSO).该算法结合小生境技术并加入了淘汰机制,使算法具有良好的全局寻优能力.变尺度混沌变异具有精细的局部遍历搜索性能,使算法具有较高的搜索精度.实验结果表明,NCPSO算法可有效避免标准PSO算法的早熟收敛,具有寻优能力强、搜索精度高、稳定性好等优点,适合于工程应用中的复杂函数优化问题. Niche chaotic mutation particle swarm optimization (NCPSO) is proposed to overcome the problem of the premature and low precision of the standard PSO. In this algorithm, niching methods and eliminating strategy are introduced to improve the global optimizing ability. Further, shrinking chaotic mutation, which behaves well in local searching, is introduced to improve the solution. Simulations show that NCPSO can avoid premature effectively and has powerful optimizing ability, good stability and higher optimizing precision.
出处 《控制与决策》 EI CSCD 北大核心 2007年第1期117-120,共4页 Control and Decision
基金 国家自然科学基金项目(60572027) 四川省杰出青年基金项目(0326ZQ026-033)
关键词 混沌变异 小生境 粒子群优化算法 Chaotic mutation Niche, Particle swarm optimization algorithm
  • 相关文献

参考文献10

  • 1Kennedy J,Eberthart R.Particle swarm optimization[C].Proc IEEE Int Conf on Neural Networks.Piscataway,1995:1942-1948.
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].Proc of Int'1 Symp on Micro Machine and Human Science.Piscataway:IEEE Service Center,1995:39-43.
  • 3Eberthart R,Shi Y.Particle swarm optimization:Developments,applications and resources[C].Proc of the Congress on Evolutionary and Computation.Piscataway:IEEE Service Center,2001:81-86.
  • 4郜庆路,罗欣,杨叔子.基于蚂蚁算法的混流车间动态调度研究[J].计算机集成制造系统-CIMS,2003,9(6):456-459. 被引量:52
  • 5Van den Bergh.An analysis of particle swarm optimizers[D].South Africa:University of Pretoria,2002.
  • 6Liu B,Wang L,Jin Y H,et al.Improved particle swarm optimization combined with chaos[J].Chaos,Solitons and Fractals,2005,25(5):1261-1271.
  • 7李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 8陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 9Lee C G,Cho D H,Jung H K.Niche genetic algorithm with restricted competition selection for multimodal function optimization[J].IEEE Trans on Magnetics,1999,35(3):1122-1125.
  • 10贾东立,张家树,张超.基于混沌遗传算法的基元提取[J].西南交通大学学报,2005,40(4):496-500. 被引量:9

二级参考文献36

  • 1VARELA G N, SINCLAIR M C. Ant colony optimization for virtual--wavelength --path routing and wavelength allocation[A]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Washington DC: IEEE, 1999. 1809--1816.
  • 2BAUER A, BULLNHEIMER B, HARTL R F, STRAUSSC. An ant colony optimization approach for the single machine total tardiness problem[A]. Proceedings of the 1999 Congresson Evolutionary Computation [C]. Washington DC: IEEE,1999. 1445-- 1450.
  • 3KRIEGER MICHAEL J B, et al. Ant--like task allocation and recruitment in cooperative robots[J]. Nature, 2000,406:39--42.
  • 4HOOGEVEEN J A, LENSTRA J K, VELTMAN B. Preemptive scheduling in a two--stage multiprocessor flow shop is NP--hard[J]. European Journal of Operational Research, 1996,89(1): 172--175.
  • 5DUDEK R A, et al. The lessons of flowshop scheduling research[J]. Operations Research, 1992, 40(1):7--13.
  • 6LINN R, ZHANG Wei, Hybrid flowshop seheduling:a survey[J]. Computers & Industrial Engineering, 1999,37(1-- 2) : 57--61.
  • 7CAMAZINE S, et al. Self--organization in biological systems[M]. Princeton USA: Princeton University Press, 2001.
  • 8BONABEAU E, DORIGO M, THERAULAZ G. Inspiration for optimization from social Insect behavior[J]. Nature, 2000,406:39--42.
  • 9DORIGO M, MANIEZZO V,COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions On System Man and Cybernetics B:Cybernetics, 1996,26(1): 29--41.
  • 10DI CARO G, DORGO M. AntNet: distributed stigmergetic control for communications networks[J]. Journal of Artificial Intelligence Research, 1998, 9:317--365.

共引文献491

同被引文献566

引证文献50

二级引证文献425

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部