摘要
The thick and hard ceramic coatings were deposited on 2024 Al alloy by microarc oxidation in the electrolytic solution. Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM,XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed ofα-Al2O3 andγ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV1800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys.
The thick and hard ceramic coatings were deposited on 2024 AI alloy by microarc oxidation in the electrolytic solution. Microstructure, phase composition and wear resistance of the oxide coatings were investigated by SEM, XRD and friction and wear tester. The microhardness and thickness of the oxide coatings were measured. The results show that the ceramic coating is mainly composed of α-Al2O3 and γ-Al2O3. During oxidation, the temperature in the microarc discharge channel is very high to make the local coating molten. From the surface to interior of the coating, microhardness increases gradually. The microhardness of the ceramic coating is HV 1 800, and the microarc oxidation coatings greatly improve the antiwear properties of aluminum alloys.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第A03期1645-1648,共4页
Transactions of Nonferrous Metals Society of China
基金
Project(04-71) supported by the Scientific Research Startup Foundation of Heilongjiang Institute of Science and Technology, China
关键词
陶瓷
铝合金
强度
抗蚀性
有色金属
2024 alloy
ceramic coatings
aluminum alloys
microarc oxidation
wear resistance
mechanical properties