期刊文献+

区域交通状态分析的时空分层模型 被引量:30

Spatial-temporal hierarchical model for area traffic state analysis
原文传递
导出
摘要 为了解决区域交通状态分析问题,提出了一种区域交通状态时空分层模型及其建立方法。根据区域交通状态分析需求,设定交通拥堵的不同截值,把路口状态划分为不同层次,建立了时空分层模型。该模型含盖了交通网络的微观、中观和宏观交通参数,包含交通网络时空信息和交通状态信息,得到路口可达性和路段连通性的分析结果,解决了目前区域交通状态自动分析中模型建立问题。仿真结果表明:分层模型能够把路网中不同交通状态的路口分离为具有不同可达性的层次,能够从中分析出路口可达性、路段连通性和路网交通状态的变化,并能够直接表示时空状态信息。该建模方法和分析方法可以直接用于交通状态的自动分析中,所提出分层模型也可用到交通诱导和交通控制中。 A spatial and temporal hierarchical model was developed for area traffic state analyses to predict area traffic states. The state analysis defines the different cut-values for traffic jams and partition intersection states into different hierarchies for the spatial and temporal hierarchical model. The model can represent micro-, meso-, and macro-traffic parameters with the spatial and temporal information and traffic state information for automatic traffic state analyses. Simulations show that the hierarchical model can partition intersections according to the traffic state of the intersections and the links of the traffic network. The intersection reachability, the link connectahility and the network state can be deduced from the model. The model can be used for automatic analyses of area traffic networks and for vehicle route guidance and traffic control systems.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期157-160,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60374059) 国家"九七三"基础研究基金项目(2006CB705506)
关键词 交通状态分析 交通状态模型 时空分层模型 traffic state analysis traffic state model spatial-temporally hierarchical model
  • 相关文献

参考文献5

二级参考文献13

  • 1Jiuyi Hua, Ardeshir Faghri. Dynamic Traffic Pattern Classification Using Artificial Neural Networks [R] .Transportation research Record 1399:14-19.
  • 2Adel W Sadek, Michael J Demetsky, Brain L Smith. Case-Basd Reasoning for Real-Time Traffic Flow Wanagement [J] .Computer-Aided Civil and Infrastructure Engineering, 1999, 14: 347-356.
  • 3Attor Sanju Nair,Jyh-Charn Liu,Laurence Rilett,Saurabh Gupta.Non-Linear Analysis of Traffic Flow.2001 IEEE Intelligent Transportation Systerns Conference Proceedings, 2001: 683- 687.
  • 4Hojjat Adeli, Asim Karim.Fuzzy-Wavelet RBFNN Model for Freeway Incident Detection [J] .Journal of Transportation Engineering, 2000:464-471.
  • 5Karlene A Kosanovich, Michael J Piovoso.PCA of Wavelet Transformed Process Data for Monitoring[J] .Intelligent Data Analysis, 1997 (1) :85-99.
  • 6Vladimir N Vapnik.Statistical Learning Theory [M] .New Yolk: Wiley, 1988.
  • 7Vladimir N Vapnik.The Nature of Statistical Learning Theory [M] .New York: Springer, 1995.
  • 8PARAMICS Use, Guide-Version 3.0.U.K.Quadstone Limited[R] .Edinburgh, 1999.
  • 9Anderson J M, Bell M G H, Sayers T M, et al. The shortterm prediction of link travel times in signal controlled road networks [A]. IFAC Symposium [C].Tianjin, 1994. 621-626.
  • 10Zarrillo M L, Radwan A E, AI-Deek H M. Modeling traffic operations at electronic toll collection and traffic management systems [J]. Computers & Industrial Engineering, 1997,33 (3-4) : 857-860.

共引文献61

同被引文献634

引证文献30

二级引证文献544

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部