期刊文献+

应用改进型小数据量法计算交通流的最大Lyapunov指数 被引量:20

The Computing of Maximum Lyapunov Exponent in Traffic Flow Applying the Improved Small-data Method
原文传递
导出
摘要 最大Lyapunov指数是非线性系统的一个非常重要的特征量.微观仿真交通流具有典型的非线性,计算交通流的最大Lyapunov指数对研究交通流的非线性特征具有重要意义.通过用虚假临界点法计算嵌入维数可以使小数据量法更加完善.首先应用改进型小数据量法计算几个典型的非线性系统的最大Lyapunov指数,验证算法结果的准确性.然后再用此方法首次对Bierley跟驰模型产生的微观仿真交通流和微观实测车流的时间序列进行实证分析.结果表明,该方法能较准确的计算出最大Lyapunov指数,可以作为研究交通流非线性特征的定量方法. The maximum lyapunov exponent is a very important measure to describe nonlinear system. Microcosmic simulation traffic flow has typical nonlinear feature. So it is important for the research on characteristic of nonlinear in traffic flow to compute maximum lyapunov exponent in traffic flow. The small-data method is improved by false nearest neighbor method calculating embedding dimension. Firstly, the maximum lyapunov exponent of several typical nonlinear systems are computed by the improved small-data method in order to confirm the veracity of results of the algorithm. Secondly, time series of microcosmic simulation traffic flows generated by Biefley model and real vehicle flow are first researched with it. The results indicate that this method can compute maximum lyapunov exponents of them exactly and can be treated as a quantitative method for study of characteristic of nonlinear in traffic flow.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第1期85-90,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(50478088)
关键词 交通流 非线性 时间序列 最大LYAPUNOV指数 小数据量法 traffic flow noulinearity time series maximum lyapunov exponent small-data method
  • 相关文献

参考文献12

  • 1Wolf A,Swift J B,Swinney H L,Vastano J A.Determining Lyapunov exponents from a time series[J].Physica D:Nonlinear Phenomena,1985,16(3):285-317.
  • 2Barana G,Tsuda I.A new method for computing Lyapunov exponents[J].Phys Lett A,1993,175:421 -427.
  • 3Briggs K.An improved method for estimating Lyapunov exponents of chaotic time series[J].Phys Lett A,1990,151:27-32.
  • 4Rosenstein MT,Collins J J,Deluca C J.A practical method for calculating largest Lyapunov exponents from small data[J].Physica D,1993,65:117-134.
  • 5陈琢,梁蓓,郭军.基于小波变换的最大Lyapunov指数的计算方法[J].贵州师范大学学报(自然科学版),2000,18(4):58-60. 被引量:2
  • 6Kantz K,Schreiber T.Nonlinear Time Series Analysis[M].Cambridge University Press,1997.
  • 7Kennel M B,Brown R,Abarbanel H D I.Determining embedding dimension for phase-space reconstruction using a geometrical construction[J].Physical Review A,1992,45(6-15):3403-3411.
  • 8Whitney H.Differentiable manifolds[J].Annals of Mathematics,1936,37,645-680.
  • 9Takens F.Detecting strange attractors in turbulence[C]//Rand D,Yound L S eds.Dynamical Systems and Turbulence,Lecture Notes in Mathematics.New York:Springer-Verlag,1981,336-381.
  • 10Sauer T,Yorke J,Casdagli M.Embedology[J].Journal of Statistical Physics,1991,65(3/4):579-611.

二级参考文献1

共引文献1

同被引文献180

引证文献20

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部