期刊文献+

近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量 被引量:64

Rapid prediction of available N,P and K content in soil using near-infrared reflectance spectroscopy
在线阅读 下载PDF
导出
摘要 运用偏最小二乘法(PLS)和人工神经网络(ANN)方法分别建立了0.9 mm筛分风干黑土土壤碱解氮、速效磷和速效钾含量预测的近红外光谱(N IRS)分析模型。使用偏最小二乘算法建立的碱解氮、速效磷和速效钾校正模型的决定系数R2分别为0.9520、0.8714和0.7300,平均相对误差分别为3.42%、13.40%和7.40%。人工神经网络方法建立的碱解氮、速效磷和速效钾校正模型的决定系数分别为0.9563、0.9493和0.9522,相对误差分别为2.67%、6.48%和2.27%,测试集仿真的相对误差分别为5.44%、16.65%和7.87%。结果表明,人工神经网络方法所建立的校正模型均优于偏最小二乘法所建模型;用近红外光谱分析法预测土壤碱解氮含量是可行的,而速效磷、速效钾模型的测试集样品仿真的相对误差较大,其预测可行性还需做进一步研究。 The calibration models were established using Partial Least Squares(PLS) and Artificial neural network (ANN) techniques to relate NIR spectral data to the concentrations of available N, available P and available K in 0. 9 mm dried soil. Coefficients of determination (R2) between results from chemical analysis and NIR-predicted concentrations, based on calibrations of PLS, are 0. 9520 for available N, 0. 8714 for available P and 0. 7300 for available K, and the mean relative errors of PLS models are 3. 420%, 13. 40% and 7. 40%, respectively. Coefficients of determination, based on calibrations of ANN, are 0. 9563 for available N, 0. 9493 for available P and 0. 9522 for available K, the mean relative errors of ANN models are 2. 67%, 6. 48% and 2. 27%, respectively, and the mean relative errors of test samples are 5. 44%, 16. 65% and 7. 87%, respectively. The results show that ANN technique is better than PLS in NIRS analysis, and the NIRS method is feasible to predict the concentration of available N, but the mean relative errors of test samples for available P and available K are high relatively, therefore, further study should be done in this field.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2007年第1期55-59,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 "863"国家高技术研究发展计划项目(2003AA209090-8)
关键词 近红外光谱分析 神经网络 偏最小二乘法 土壤养分 Near-Infrared Reflectance Spectroscopy (NIRS) Artificial Neural Network (ANN) Partial Least Square(PLS) soil nutrient
  • 相关文献

参考文献14

  • 1鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999..
  • 2胡建东,肖建军,田瑞华,孙晓全,朱秀红,姚玉梅,葛金凤.YN型快速土壤肥料养分测定仪的研制[J].河南农业大学学报,1998,32(2):171-175. 被引量:2
  • 3曹干.现代近红外光谱分析技术在农业研究中的应用[J].广东农业科学,2004,31(B12):26-31. 被引量:19
  • 4赵锁劳,彭玉魁.我国黄土区土壤水分、有机质和总氮的近红外光谱分析[J].分析化学,2002,30(8):978-980. 被引量:31
  • 5Ehsani M R, Upanhyaya S K, Slaughter D, et al. A NIR technique for rapid determination of soil mineral nitrogen[J]. Precision Agriculture, 1999,1(2) :217-234.
  • 6Confalonieri M, Fornasier F, Ursino A, et al. The potential of near infrared reflectance spectroscopy as a tool for the chemical characterization of agricultural soils [J].Journal of Near Infrared Spectroscope, 2001,(9):123-131.
  • 7Hummel J W, Sudduth K A, Hollinger S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor[J]. Computers and Electronics in Agriculture, 2001,32(2) : 149- 165.
  • 8Russelll C A, Angus J F, Batten G D, et al. The potential of NIR spectroscopy to predict nitrogen mineralization in rice soils[J]. Plant and Soil, 2002,247: 243-252.
  • 9Elena Velasquez, Patrick Lavelle, Edmundo Barrios,et al. Evaluating soil quality in tropical agroecosystems of Colombia using NIRS[J]. Soil Biology & Biochemistry,2005,37: 889-898.
  • 10彭玉魁,张建新,何绪生,卢恩双.土壤水分、有机质和总氮含量的近红外光谱分析研究[J].土壤学报,1998,35(4):553-559. 被引量:99

二级参考文献45

共引文献1886

同被引文献742

引证文献64

二级引证文献518

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部