期刊文献+

基于模糊的多目标粒子群优化算法及应用 被引量:13

An Optimization Arithmetic for Multi-objective Particle Swarm Based on Fuzziness and Its Application
在线阅读 下载PDF
导出
摘要 粒子群优化算法的思想来源于人工生命和进化计算理论,由于其容易理解、易于实现,在很多领域得到了应用。由于传统的粒子群优化算法无法对多目标优化问题进行求解,因此文中利用模糊理论中的隶属度函数和给定的最优解评估选取原则,提出了一种适合求解约束型多目标优化问题的模糊粒子群算法(FPSO)。模糊粒子群算法很好地解决了汽车零部件可靠性稳健优化设计的求解问题,仿真结果证明,该算法可行而有效,同时也拓展了粒子群算法的应用领域。 Particle Swarm Optimization (PSO) is a new optimization technique originating from artificial life and evolutionary computation. PSO is applied to many fields for it is easily to be understood and performed. According to the evaluating principle of given optimal solution and the membership function of fuzzy theory, a new method named fuzzy particle swarm optimization (FPSO) is presented for solving MOP problem because the traditional PSO cannot solve the multi - objective optimization (MOP) problem. It is amenable to MOP problem with constraint model. FPSO can effectively cope with robust optimization design for reliability of automobile component. And it is proved to be effective and available by experiments. It also expands the application field of MOP arithmetic.
出处 《计算机仿真》 CSCD 2007年第2期153-156,共4页 Computer Simulation
关键词 模糊粒子群算法 隶属度函数 多目标优化 可靠性稳健优化设计 Fuzzy particle swarm optimization Membership function Multi - objective optimization Robust optimization design for reliability
  • 相关文献

参考文献7

  • 1J Kennedy,R C Eberhart. Particle swarm optimization[ C].IEEE Int Conf on Neural Networks, 1995. 1942 - 1948.
  • 2J E Fieldsend. Multi - Objective Particle Swarm Optimization Methods[ R]. Exeter: University of Exeter, 2004.
  • 3张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:229
  • 4C A C Coello, L M S echunga, A proposal for multiple objective swarm optimization [ C ]. In Proceedings of the 2002 Congress on Evolutionary Computation, 2002. 1051 - 1056.
  • 5J E Fieldsend, S A Singh. multi - objective algorithm based upon particle swarm optimization an efficient data structure and turbulence[C]. In Proceedings of UK Workshop on Computational Intelligence. 2002.37 - 44.
  • 6K E Parsopoulos, M N Vrahatis. Particle swarm optimization method in multiobjective problems[ C]. In Proceedings of the 2002 ACM symposium on Applied Computing (SAC 2002),2002. 603 - 607.
  • 7ZHAO Bo , CAO Yi - jia. Multiple objective particle swarm optimization technique for economic load dispatch[ J]. Journal of Zhejiang University SCIENCE,2005,6A (5) :420 - 427.

二级参考文献15

  • 1C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308
  • 2J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985
  • 3D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998
  • 4R Eberhart,J Kennedy.A new optimizer using particle swarm theory.In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Service Center,1995.39~43
  • 5J Kennedy,R Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995
  • 6K E Parsopoulos,M N Vrahatis.Particle swarm optimizer in noisy and continuously changing environments.In:M H Hamza ed.Artificial Intelligence and Soft Computing.Iasted:ACTA Press,2001.289~294
  • 7K E Parsopoulos,M N Vrahatis.Particle swarm optimization method for constrained optimization problems.Euro-Int'l Symp on Computational Intelligence 2002,Slovakia,2002
  • 8R C Eberhart,X Hu.Human tremor analyis using particle swarm optimization.IEEE Congress on evolutionary computation (CEC 1999),Washington,D C,1999
  • 9Y Shiand,R Eberhart.A modified particle swarm optimizer.IEEE Int'l Conf on Evolutionary Computation,Anchorage,Alaska,1998
  • 10H Yoshida,K Kawata,Y Fukuyama,et al.A particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Trans on Power Systems,2000,15(4):1232~1239

共引文献228

同被引文献132

引证文献13

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部