期刊文献+

基于反向K近邻的孤立点检测算法 被引量:8

Outlier detection algorithm based on Reverse K Nearest Neighbors
在线阅读 下载PDF
导出
摘要 提出了基于反向K近邻(RKNN)的孤立点检测算法ODRKNN。ODRKNN算法用每个数据点的反向K近邻个数来衡量该数据点的偏离程度,在综合数据集和真实数据集上的实验结果表明,该算法能有效地检测出孤立点,且算法的效率高于算法LOF和LSC的效率。 This paper proposes a new outlier detection algorithm ODRKNN based on reverse K nearest neighbors.ODRKNN counts the number of each point's reverse K nearest neighbors to reflect its isolation degree,experimental results on synthesized and real world dataset show that ODRKNN can efficiently detect outliers and has higher efficiency than outliers detection algorithm LOF and LSC.
作者 岳峰 邱保志
出处 《计算机工程与应用》 CSCD 北大核心 2007年第7期182-184,共3页 Computer Engineering and Applications
关键词 孤立点 K近邻 反向K近邻 outliers K Nearest Neighbors Reverse K Nearest Neighbors(RKNN)
  • 相关文献

参考文献6

  • 1范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Breunig M M,Kriagel H P,Ng R T,et al.LOF:identifying densitybased local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data,Dallas,Texas,USA,2000:93-104.
  • 3Xia Chen-yi,Hsu W,Lee M L,et al.BODER:efficient computation of boundary points[J].IEEE Transaction on Knowledge and Data Engineering,2006 (18).
  • 4Ertoz L,Steinbach M,Kumar V.Finding clusters of different sizes,shapes,and densities in noisy,high dimensional data[C]//2nd SIAM International Conference on Data Mining,SDM 2002 IAM Press:SDM2003,2003:1-12.
  • 5Hsu Chih-ming,Chen Ming-syan.Subspace clustering of high dimensional spatial data with noises[C]//Advances in Knowledge Discovery and Data Mining.8th Pacific-Asia Conference,PAKDD 2004.Heidlberg,Germany:Springer,2004:31-40.
  • 6Korn F,Muthukrishna S.Influence sets based on reverse nearest neighbors queries[C]//Proceedings of ACM SIGMOD,2000:201-212.

共引文献119

同被引文献70

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部