期刊文献+

主动负重和被动加载时骨折局部力学环境的比较研究 被引量:7

A comparison of biomechanical environments of fracture healing: active weight-bearing vs. passive loading
原文传递
导出
摘要 目的比较主动和被动加载时长骨骨折局部的生物力学环境,为选择理想的加载模式提供参考。方法建立胫骨中段横行骨折外固定系统的三维模型,通过改变骨痂弹性模量模拟骨折愈合早期(4—8周)愈合骨的刚度,利用有限元法计算主动负重与被动加载时骨折局部的力学环境及钉孔处的应力分布。结果主动负重时骨痂内部始终为压应力;被动加载在骨折愈合早期也为压应力,但随着骨痂刚度的提高,靠近外固定支架侧仍为压应力,对侧逐渐转为张应力。骨折断端的位移随着骨痂刚度的提高而降低,到术后8周位移接近为零。两种载荷方式钉孔处存在较高的压应力,但主动载荷时应力更高。结论在骨折愈合早期,宜采用体外的机械装置对愈合骨施加载荷,其力学影响因素为位移;随着骨痂的生长与钙化,应逐渐改为由患者主动部分和完全负重,其力学影响因素为应力。 Objective To find an optimal loading method for long bone fracture healing after com- parison of the local biomechanical environments under active and passive loadings. Methods A 3-D model of the external fixation system for transverse tibial mid-shaft fracture was constructed. The rigidities of the healing bone during the early stage (4 to 8 weeks) were simulated by varying elastic moduli to the callus. Then the mechanical environments of the fracture site and the stress distributions at the pin tract under active and passive loadings were evaluated using the finite element model. Results Active loading always produced the compressive stress in the callus; passive loading did also during the early stage of healing. With the stiffening of callus under passive loading, the compressive stress remained at the adjacent side of external fixator but changed into tensile stress at the contralateral side. Displacement of the fragment ends decreased with stiffening of callus, and nearly stopped at 8 weeks. High compressive stress was observed near the inlet of pin tract in both groups, but even higher one under the active loading condition. Conclusions Passive loading resulting from mechanical apparatus is appropriate during the early stages of healing when the chief biomechanical factor is displacement of bone fragments. Active part or full weight-bearing should be done gradually during increased calcification of callus when the chief biomechanical factor is bone stress.
出处 《中华创伤骨科杂志》 CAS CSCD 2007年第3期258-262,共5页 Chinese Journal of Orthopaedic Trauma
基金 上海市科委资金资助课题(024119040)
关键词 加载 骨折愈合 力学环境 有限元法 Loading Fracture healing Mechanical environment Finite element method
  • 相关文献

参考文献14

  • 1Bailon-Plaza A, van der Meulen MC. Beneficial effects of moderate,early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech, 2003, 36: 1069-1077.
  • 2Laeroix PJ. A meehano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech,2002, 35: 1163-1171.
  • 3Krischak G, Janousek A, Wolf S, et al. Effects of one-plane and two plane external fixation on sheep osteotomy healing and complications.Clin Biomeeh, 2002, 17: 470-476.
  • 4Augat P, Merk J, Wolf S, et al. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing. J Orthop Trauma, 2001, 15: 54-60.
  • 5Wolf S, Augat P. Effects of high-frequency, low-magnitude mechanical stimulus on bone healing. Clin Orthop Relat Res, 2001, (385):192-198.
  • 6Claes L, Eckert K. The effect of mechanical stability on local vascularization and tissue differentiation in callus bealing.J Orthop Res,2002,20:1099-1105.
  • 7Hente R,Fuchtmeier B,Schlegel U,et al.The influence of cyclic compression and distraction on the healing of experimental tibial fractures.J Orthop Res,2004,22:709-715.
  • 8Gardner TN,Mishra S,Marks L.The role of osteogenic index,octahedral shear stress and dilatational stress in the ossification of a fracture callus.Med Eng Phys,2004,26:493-501.
  • 9王小平,李柱国,张先龙,高雪官.端面凸轮传动医用微动装置的设计和动力学分析[J].机械设计与研究,2004,20(6):29-30. 被引量:2
  • 10Yamaji T,Ando K,Wolf S,et al.The effect of micromovement on callus formation.J Orthop Sci,2001,6:571-575.

二级参考文献15

  • 1Goodship AE, Norrodin N, Francis M. The stimulation of prostaglandin synthesis by micromovement in fracture healing[J ].Micromovement in Orthopaedics, 1992,31 - 34.
  • 2Kershaw CJ, Cunningham J L, Kenwright J. Tibial extemal fixation, weight bearing and fracture movement[J ]. Clin Orthop,1993,293:28-36.
  • 3Sarmiento A, Mckellop HA, Llinas A, et al. Effect of loading and fracture motions on diaphyseal tibial fracture [ J ]. J Orthop Res, 1996,14:80-84.
  • 4Yamaji T, Ando K, Wolf S, et al. The effect of micromovement on callus formation. J OrthopSci, 2001, 6: 571-575.
  • 5Park SH, Silva M. Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg(Am), 2003, 85: 1446-1453.
  • 6Augat P, Merk J, Wolf S, et al. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing. J Orthop Trauma, 2001, 15: 54-60.
  • 7Duda GN, Sollmann M, Sporrer S, et al. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop, 2002, (396): 163-172.
  • 8Wheeler DL, Eschbach E J, Montfort M J, et al. Mechanical strength of fracture callus in osteopenic bone at different phases of healing. J Orthop Trauma, 2000, 14: 86-92.
  • 9Klein P, Schell H, Streitparth F, et al. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res, 2003, 21: 662-669.
  • 10Claes L, Eckert-Hubner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res, 2002, 20: 1099-1105.

共引文献24

同被引文献92

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部