期刊文献+

基于改进PCA的正常工况改变与过程故障识别方法 被引量:3

A method for identification of normal process changes and process faults based on improved PCA
原文传递
导出
摘要 针对传统的主元分析(PCA)的T^2和平方预测误差(SPE)检验所提供的信息并不一致的缺陷,提出一种改进的PCA方法。该方法采用主元相关变量残差(PVR)和一般变量残差(CVR)统计量代替SPE统计量用于过程监测。将此改进的PCA方法应用到双效蒸发过程的仿真监测,与传统的PCA方法相比,新PCA方法能够有效地识别正常工况改变与过程故障引起的T^2图变化,避免了SPE统计量的保守性,能够提供更详细的过程变化信息,提高了对过程变化的分析与诊断能力。 The information provided by T^2 and squared prediction error (SPE) test of principal component analysis (PCA) is not corresponding. An improved PCA is presented which uses principal-component-related variable residual (PVR) statistic and Common Variable Residual (CVR) statistic to replace SPE statistic. Then a simulated double-effect evaporator is monitored by using the proposed method and comparisons with the conventional PCA are made. The simulation result shows that the root cause that violates the T^2 test but still satisfies SPE test can be unambiguously identified and the improved PCA can avoid the conservation of SPE statistical test and provide more explicit information about the process conditions. So the improved PCA has an enhanced fault diagnosing performance.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2007年第2期163-168,共6页 Computers and Applied Chemistry
基金 国家科技攻关计划"先进控制与优化软件及综合自动化软件平台产业化关键技术"资助(2001BA204B01-03)
关键词 主元分析 过程监测 主元相关变量 principal component analysis, process monitoring, principal-component-related variable
  • 相关文献

参考文献2

二级参考文献14

  • 1MacGregor J F,Jaeckle C,Kiparissides C,Koutoudi M,AIChE J.,1994,40(5):826-838
  • 2Gertler G,Li W,Huang T,McAvoy T.AIChE J.,1999,45(2):323-334
  • 3Jackson J E, Mudholkar G S.Technometrics,1979,21(3):341-349
  • 4Montogomery D C.Introduction to Statistical Quality Control.Now York: John Wiley & Sons,Inc.,1990
  • 5Mason RL and Young JC. Multivariate statistical process control with industrial application, USA, SIAM, 2002.
  • 6Chiang LH, Russell EL and Braatz RD. Fault detection and diagnosis in industrial systems. Springer-Verlag Londer Limited, 2001.
  • 7Qin SJ. Statistical process monitoring: basic and beyond, Journal of Chemometrics, 2003, 17:480 - 502.
  • 8Dongsoon Kim, In-Beum Lee. Process monitoring based on probabilistic PCA. Chemometrics and Intelligent Laboratory Systems, 2003,67 : 109 - 123.
  • 9Lee Jongmin, Yoo Changkyoo, Lee In-Beum. Statistical process monitoring with independent component analysis. Journal of Process Control, 2004, 14:467 - 485.
  • 10Lee Jongmin and Yoo Changkyoo, et al. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59:223 - 234.

共引文献59

同被引文献23

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部