期刊文献+

基于极值分布理论的VaR与ES度量 被引量:48

Computing VaR and ES Based-on EVT
原文传递
导出
摘要 本文应用极值分布理论对金融收益序列的尾部进行估计,计算收益序列的在险价值VaR和预期不足ES来度量市场风险。通过伪最大似然估计方法估计的GARCH模型对收益数据进行拟合,应用极值理论中的GPD对新息分布的尾部建模,得到了基于尾部估计产生收益序列的VaR和ES值。采用上证指数日对数收益数据为样本,得到了度量条件极值和无条件极值下VaR和ES的结果。实证研究表明:在置信水平很高(如99%)的条件下,采用极值方法度量风险值效果更好。而置信水平在95%下,其他方法和极值方法结合效果会很好。用ES度量风险能够使我们了解不利情况发生时风险的可能情况。 The paper is concerned with tail estimation for financial return series and, in particular, the estimation of market risk such as value at risk VaR or the expected shortfall. We fit GARCH-models to return data using pseudo maximum likelihood and use a GPD-approximation suggested by extreme value theory to model the tail of the distribution of the innovations. We find that a conditional approach that models the conditional distribution of asset returns against the current volatility background is better suited for VaR estimation than an unconditional approach that tries to estimate the marginal distribution of the process generating the returns. In the empirical research we choose Shanghai stock-market index and find that ES is more efficient than VaR.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2007年第3期118-124,133,共8页 Journal of Quantitative & Technological Economics
基金 2006年国家社会科学基金项目(06JY010) 2004年教育部重大项目(05JJD790005) "吉林大学‘985工程’项目" 吉林大学经济分析与预测创新基地资助
关键词 极值分布 在险价值(VaR) 预期不足(ES) GARCH模型 Extreme Value Theory VaR Expected Shortfall GARCH Model
  • 相关文献

参考文献14

  • 1Longin F M.The asymptotic distribution of extreme stock market returns[J].Journal of business,1996,69 (3):383~408.
  • 2Kearns P,Paqan A.Estimating the density tail index for financial time series[J].The Review of Economics and Statistics,1997,171~175.
  • 3Longin F M.From value at risk to stress testing:the extreme value Approach[J].Journal of Banking and Finance,2000,24:1097~1130.
  • 4Ho L C,Burridge P,Caddle J.Value at Risk:applying the extreme value approach to Asian markets in the recent financial turmoil[J].Pacific Basin Finance Journal,2000,8,249~275.
  • 5Artzner P,Delbaen.F,et al.Thinking coherently[J].Risk,1997,10 (11):68~71.
  • 6Artzner P,Delbaen.F,et al.Coherent measures of risk[J].Math Finance,1999,9 (3):203~228.
  • 7朱国庆,张维,张小薇,敖路.极值理论应用研究进展评析[J].系统工程学报,2001,16(1):72-77. 被引量:24
  • 8周开国,缪柏其.应用极值理论计算在险价值(VaR)——对恒生指数的实证分析[J].预测,2002,21(3):37-41. 被引量:33
  • 9陈学华,杨辉耀.股市风险VaR与ES的动态度量与分析[J].系统工程,2004,22(1):84-90. 被引量:25
  • 10Hosking J R M,Wallis J R,Parameter and quantile estimation for the generalized Pare to distribution[J].Techno metrics,1987,29:339~2349.

二级参考文献25

  • 1史道济.马尔科夫链的Fisher信息阵及参数的最大似然估计[J].天津大学学报,1993,26(3):98-105. 被引量:4
  • 2史道济.二元极值分布参数的最大似然估计与分步估计[J].天津大学学报,1994,27(3):294-299. 被引量:6
  • 3史道济,阮明恕,王毓娥.多元极值分布随机向量的抽样方法[J].应用概率统计,1997,13(1):75-80. 被引量:28
  • 4[7]Bollerslev T. A conditionally heteroskedastic time series model for speculative prices and rates of return[J]. Review of Economics and Statistics,1987,69:542~547.
  • 5[8]Kaiser T. One-factor-GARCH models for German stocks - estimation and forecasting[R]. Universiteit Tubingen,1996.
  • 6[9]Ding Z,Granger C W J,Engle R F. A long memory property of stock market returns and a new model[J]. Journal of Empirical Finance,1993,1:83~106.
  • 7[10]Artzner P,Delbaen F,Eber J M,Heath D. Coherent measures of risk[J]. Mathematical Finance,1999,9(3):203~228.
  • 8[1]Jorion P. Value at Risk(2nd edition)[M]. McGraw-Hill,2001.
  • 9[2]Kupiec,Paul H. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives,1995,3(2):73~84.
  • 10[3]Mandelbrot B. The variation of certain speculative prices[J]. Journal of Business,1963,36:304~419.

共引文献119

同被引文献502

引证文献48

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部