期刊文献+

贝叶斯方法在玉米叶部病害图像识别中的应用 被引量:27

Bayesian classifier method on maize leaf disease identifying based images
在线阅读 下载PDF
导出
摘要 根据锈病、弯孢菌叶斑病、灰斑病、小斑病及褐斑病等五种玉米病斑图像的实际情况,在图像分割和特征提取的基础上,利用朴素贝叶斯分类器的统计学习方法,实现玉米叶部病斑的分类识别。研究结果表明,对五种玉米叶部病害的诊断精度在83%以上。贝叶斯分类器具有网络结构简单、易于扩展等特点,对玉米叶部病害的分类识别效果较好,也为其它作物病害图像识别的研究提供了借鉴。 A naive Bayesian classifier method is proposed to classify maize leaf disease according to five kinds of actual maize disease images,which are segmented and extracted feather from at first.The result shows that the precision of maize disease identifying is higher than 83%.Bayesian classifier is excellent at simple network structure and extending easily.It is effective for classifying maize disease and it can use for reference for the image recognition research on other crops.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第5期193-195,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(the National High- Tech Research and Development Plan of China under Grant No.2002AA243041) 国家自然科学基金(the National Natural Science Foundation of China under Grant No.30360047)
关键词 朴素贝叶斯方法 玉米叶部病害 特征提取 分类识别 特征约简 naive Bayesian method maize leaf disease feather extracting classify and identify feather reduction
  • 相关文献

参考文献11

二级参考文献48

  • 1王永强,律方成,李和明.基于贝叶斯网络和DGA的变压器故障诊断[J].高电压技术,2004,30(5):12-13. 被引量:24
  • 2莫娟,王雪,董明,严璋.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167. 被引量:85
  • 3王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 4于新文.昆虫图像数字技术的研究开发:[学位论文].北京:中国农业大学,1999..
  • 5[1]Heckeman D. Bayesian Networks for Data Mining [J]. Data Mining and Knowledge Discovery, 1997,(Ⅰ):79- 1 19
  • 6[2]Heckeman D, Geiger D, Chickering D.Learning Bayesian Networks: the Combination of Knowledge and Statistical Data[J]. Machine Learing, 1995,20(3): 197-243
  • 7[5]Cooper G. Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data[J ].Machine Learning, 1992,(9):309
  • 8[1]Anup K Ghosh,Aaron Schwartzbard.A study is using neural networks for anomaly and misuse detection[C].In:The 8th USENIX Security Symposium,Washington DC,1999
  • 9[2]B Balajinath,S V Raghavan.Intrusion detection through learning behavior model[J].Computer Communication,2001 ;24(12):1202~1212
  • 10[3]S Jha,K Tan,R A Maxion.Markov chains,classifiers and intrusion detection[C].In:The 14th IEEE Computer Security Foundations Workshop,Canada,2001

共引文献1072

同被引文献291

引证文献27

二级引证文献286

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部