期刊文献+

波动方程角度域偏移成像 被引量:5

Wave Equation Migration in Angle Domain
在线阅读 下载PDF
导出
摘要 在共炮集数据的波动方程深度偏移成像中,利用常规的波场传播算子进行检波点波场和震源波场的向下传播,在各个深度层借助波场的窗口Fourier框架展开,得到局部角度域的检波点波场和震源波场,然后应用偏移成像原理,提出了共炮集数据的波动方程角度域偏移成像方法.通过角度域偏移成像,可以得到地下成像点处的角度域成像矩阵以及共地层倾角偏移成像剖面和共反射角偏移成像剖面.也可为基于偏移成像的后续处理方法技术,如振幅随角度变化分析处理、角度域共成像道集提取和角度域速度分析,提供基础资料.以陡倾角模型和国际标准的Marmousi模型为数值试验例子,验证了波动方程角度域偏移成像方法的正确性和有效性. In the wave equation depth migration of common shot gathers, the windowed Fourier frame expansion of seismic wavefield is used to obtain the receiver and source wavefields in the local angle domain. We propose a wave equation migration method in angle domain for common shot gathers seismic data. With migration in angle domain, the image matrix in local angle domain, the migration sections with different common-dip angles and reflection angles at imaging points are obtained. It provides fundamental data for processing approaches based on migration, such as analysis of amplitude versus angle, extraction of common image gather in angle domain and velocity analysis in angle domain. Numerical examples in a steep dip model and an international standard Marmousi model show that the wave equation migration method in angle domain is correct and effective.
出处 《计算物理》 EI CSCD 北大核心 2007年第2期211-216,共6页 Chinese Journal of Computational Physics
基金 国家高技术研究发展(863)计划项目(2003AA611020/01) 海洋地质国家重点实验室开放课题(2005007)资助项目
关键词 波动方程 窗口Foutier框架展开 局部角度域 偏移成像 地层倾角 反射角 wave equation windowed Fourier frame expansion local angle domain migration stratum dip angle reflection angle
  • 相关文献

参考文献4

二级参考文献70

  • 1[3]Audebert F, Nichols D, Rekdal T,et al. Imaging complex geologic structure with single arrival Kirchhoff pre-stack depth migration. Geophysics, 1997, 62(5): 1533~1543
  • 2[4]Stoffa P L, Fokkema J T, de Luna Freire R M,et al. Split-step Fourier migration. Geophysics, 1990, 55(4): 410~421
  • 3[6]de Bruin C G M, Wapenaar C P A, Berkhout A J. Angle-dependent reflectivity by means of prestack migration. Geophysics, 1990, 55(9): 1223~1234
  • 4[7]Berkhout A J. Seismic Migration: Imaging of Acoustic Energy by Wave Field Extrapolation, A Theoretical Aspects. Elsevier Science Publ. Co., Inc. 1985
  • 5[8]Fomel S, Prucha M. Angle-gather time migration. Stanford Exploration Project, 1999, 100: 359~368
  • 6[9]Xu S, Chauris H, Lambaré G, et al. Common-angle migration: A strategy for imaging complex media. Geophysics, 2001, 66(6): 1877~1894
  • 7[10]Brandsberg-Dahl S, de Hoop M V, Ursin B. Focusing in dip and AVA compensation on scattering-angle/azimuth common image gathers. Geophysics, 2003, 68(1): 232~254
  • 8[11]Rickett J E, Sava P C. Offset and angle-domain common image-point gathers for shot-profile migration. Geophysics, 2002, 67(3): 883~889
  • 9[13]Wu R S, Chen L. Wave propagation and imaging using Gabor-Daubechies beamlets. In: Shang E C, Li Q, Gao T F eds. Theoretical and Computational Acoustics 2001, 2001, 661~670
  • 10[14]Wu R S, Wang Y, Gao J H. Beamlet migration based on local perturbation theory. 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2000. 1008~1011

共引文献67

同被引文献72

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部