期刊文献+

基于时频独立分量分析的Wigner-Ville分布交叉项消除法 被引量:5

Time frequency-based independent component analysis for elimination of cross-terms in Wigner-Ville distribution
在线阅读 下载PDF
导出
摘要 由于信号混合引起的交叉项严重降低了Wigner-Ville分布的时频分辨率,为此提出一种基于独立分量分析的Wigner-Ville分布交叉干扰项消除法.在无须了解信号混合系数的情况下,通过盲源分离法提取各独立分量信号,给出盲源分离结果不确定的解决方法.建立了包含自项与交叉项的时频分布矩阵,利用时频分布矩阵的联合对角化算法消除独立分量信号之间的交叉干扰项.通过独立分量自项求和重构Wigner-Ville分布,重构的Wigner-Ville分布具有良好的时频分辨率.数值仿真结果验证了算法的有效性. The cross-terms of Wigner-Ville distribution resulting from signals mixing substantially reduce its time-frequency resolution. An independent component analysis approach was presented to eliminate the cross-terms in Wigner-Ville distribution. The ambiguity of separated components was firstly resolved and the independent signal components were extracted via blind source separation. The time-frequency distribution matrices containing auto-terms and cross-terms were established. Based on joint diagonalisation of the time-frequency distribution matrices, the proposed independent component analysis method recovered the auto-term of each component in Wigner-Ville distribution. The cross-terms caused by independent component mixing were reduced significantly. The reconstructed Wigner-Ville distribution has good time-frequency resolution. The method was finally illustrated by a numerical example.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第2期254-256,263,共4页 Journal of Zhejiang University:Engineering Science
关键词 WIGNER-VILLE分布 独立分量分析 盲源分离 交叉项 联合对角化 Wigner-Ville distribution independent component analysis blind source separation crossterms joint diagonalisation
  • 相关文献

参考文献11

  • 1COHEN L.Time-frequency analysis[M].Englewood Clis:Prentice-Hall,1995.
  • 2HLAWATSCH F,MANICKAM T G,URBANKE R L,et al.Smoothed pseudo-Wigner distribution,Chol-Williams distribution,and cone-kernel representation:ambiguity-domain analysis and experimental comparison[J].Signal Processing,1999,43(2):149-168.
  • 3COMON P.Independent component analysis:a new concept?[J].Signal Processing,1994,36(3):287-314.
  • 4JUTTEN C,HERAULT J.Blind separation of sources.Part I:an adaptive algorithm based on neuromimetic architecture[J].Signal Processing,1991,24(1):1-10.
  • 5MOREAU E.A generalization of joint-diagonalization criteria for source separation[J].IEEE Transactions on Signal Processing,2001,49(3):530-541.
  • 6张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:212
  • 7HE Z Y,YANG L X,LIU J.Blind source separation using clustering-based multivariate density estimation algorithm[J].IEEE Transactions on Signal Processing,2000,48(2):575-579.
  • 8CAO X R,LIU R W.General approach to blind source separation[J].IEEE Transactions on Signal Processing,1996,44(3):562-571.
  • 9MURATA N,IKEDA S,ZIEHE A.An approach to blind sources separation based on temporal structure of speech signals[J].Neurocomputing,2001,41(1):1-24.
  • 10BELOUCHRANI A,MERAIM A K,CARDOSO J F,et al.A blind source separation technique using second order statistics[J].IEEE Transactions on Signal Processing,1997,45(2):434-444.

二级参考文献51

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献211

同被引文献63

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部