摘要
以针对颤振机理研究而建立的二维三自由度耦合颤振分析方法为理论工具,结合节段模型风洞试验,对薄平板断面中央稳定板气动控制措施的颤振控制效果和控制机理进行了研究.通过对基本断面和四种不同高度稳定板断面的颤振性能、颤振驱动机理和颤振形态变化规律的研究表明,当稳定板高度恰当时,中央稳定板的设置能够有效地改善结构的颤振稳定性能.其控制机理是增加竖向自由度参与程度,改变耦合气动阻尼的性质和发展规律,从而抑制系统扭转运动的发散,使得颤振形态转化为竖弯形式.但是当稳定板高度超过临界值后,由于系统竖弯运动稳定性的降低,结构的颤振稳定性能反而会下降.
Based on the two-dimensional 3DOF coupling flutter analysis method (2d-3DOF method), the flutter controlling effect and mechanism of central stabilizer on a thin plate section are investigated with a series of sectional model wind tunnel tests. The research results, which include the investigation of the aerodynamic performance, flutter-driving mechanism and flutter modality of the basic section and corresponding sections with central stabilizers of different height, indicate that central stabilizer can improve the aerodynamic stability when the height of central stabilizer is appropriate. The controlling mechanism of central stabilizer is to increase the participation level of heaving motion and to change the properties and evolution trends of coupled aerodynamic dampings, so that the stability of systematic torsional motion can be improved and the flutter modality can be changed into heaving type. However, when the height of central stabilizer exceeds the critical limit, the aerodynamic stability of controlled section will decrease due to the deterioration of the stability of systematic heaving motion.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第2期149-155,共7页
Journal of Tongji University:Natural Science
基金
国家自然科学基金资助项目(50608059)
关键词
中央稳定板
颤振控制
控制机理
颤振驱动机理
颤振形态
大跨度桥梁
central stabilizer
flutter control
controlling mechanism
flutter-driving mechanism
flutter modality
long-span bridge