期刊文献+

矩阵的Doolittle递归分解算法及符号程序设计 被引量:1

Recursive algorithm and symbolic programming for matrix Doolittle's factorization
在线阅读 下载PDF
导出
摘要 将矩阵An×n的Doolittle分解推广到Am×n上,并在常规的迭代算法上加以创新,给出了递归的分解算法.在实现算法的过程中,对数据进行了巧妙处理,使中间数据及最终计算结果都具有分数形式,提高了结果的精确度,而且更符合人们阅读的习惯.经过运行测试,算法设计合理,程序运行高效准确.程序是对MathSoft公司的交互式的数学文字软件Mathcad的矩阵分解的数值计算扩充到符号运算. Apply Doolittle's factorization of matrix An×n to matrix Am×n that has m rows and n columns, and conceive a new recursive algorithm of Doolittle's factorization of matrix on the basis of traditional iterative algorithm. In the realization of algorithm, the data is skillfully dealt, so the interim data and the result have the form of fraction. These merits improve the result's exactness. And above that it conforms to readers' reading habit compared to double or float forms. After running it, the result proves that the algorithm is reasonably designed and the program is running with high proficiency and exactness. The program is an augmentation of matrix factorization in the MathSoft's interactive mathematic language software, which promotes matrix factorization from numerical computation to symbolic computation.
出处 《智能系统学报》 2007年第1期90-93,共4页 CAAI Transactions on Intelligent Systems
关键词 矩阵 Doolittle分解 算法 matrix Doolittle' s factorization algorithm
  • 相关文献

参考文献5

  • 1陈建平,Jerzy Wasniew ski.Cholesky分解递归算法与改进[J].计算机研究与发展,2001,38(8):923-926. 被引量:11
  • 2[3]LIU Mode.The structured programming of Crouts method solving linear equation[J].Journal of Sanming College,2003,20(2):62-66.
  • 3徐仲.矩阵论简明教程[M].北京:科学出版社,2002.
  • 4[6]RICHARD L,BURDEN J,FAIRES D.Numerical analysis:7th Edition[M].Thomson I.earning,2001.
  • 5[7]JAIN S K,GuNAwARDENA A D.Linear algebra:an interactive approach[M].Beijing:China Machine Press,2003.

二级参考文献6

  • 1[1]Dongarra J et al. A set of level 3 basic linear algebra s ubprograms. ACM Trans on Mathematical Software, 1990, 16(1): 1~17
  • 2[2]Anderson E et al. LAPACK Users' Guide. 2nd ed. Philadelphia: Socie ty for Industrial and Applied Mathematics, 1995
  • 3[3]Gustavson F. Recursion leads to automatic variab1e blocking for dense linear a1gebra. IBM Journal of Research and Development, 1997, 41(6): 737~755
  • 4[4]Demmel J W. App1ied Numerical Linear Algebra. Philadelphia: Society fo r Industrial and Applied Mathematics, 1997
  • 5[5]Metcalf S, Reid J. FORTRAN90/95 Explained. Oxford: Oxford University P ress, 1996
  • 6[6]Engineering and Scientific Subroutine Library, Guide and Ne w York: IBM, 1994

共引文献10

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部