期刊文献+

产生匀强磁场的球状线圈设计 被引量:5

Design of Spherical Coils for a Homogenous Magnetic Field
在线阅读 下载PDF
导出
摘要 根据Biot-Savart定律和磁场叠加原理,提出了一种产生匀强磁场的三维正交球状反馈线圈系统的设计方法。为分析该系统内部的磁场分布,建立了球状线圈内磁场分布的数学模型,并讨论了其磁场分布、分布均匀度与线圈匝数,线圈间距和有关参数之间的关系。分析结果表明球状线圈能在较小的几何尺度内产生较大范围的均匀磁场,可根据磁传感器几何尺寸和对匀强磁场均匀度的需求,利用此设计方法确定球状线圈的线圈匝数和线圈间距等绕制参数,实现磁传感器的磁场反馈。 According to Biot-Savart law and superposition principle of magnetic field, a three-dimensional orthogonal spherical feedback coils system design was proposed. A spherical coil magnetic field distribution mathematical model was establishedto analyze the internal magnetic field. Numerical solutions of spherical coil internal magnetic field were done through the model. The relationship between homogeneity and other parameters such as coil number and spacing interval was analyzed in detail. Results of the analysis indicate that a large volume homogenous magnetic field generated by spherical coils in the small geometric scale is realized. Furthermore, based on the magnetic sensors geometry and requirement for magnetic field homogeneity, the design parameters including coil number and spacing interval can be selected to achieve the magnetic field magnetic sensors feedback.
出处 《电工技术学报》 EI CSCD 北大核心 2007年第1期2-6,共5页 Transactions of China Electrotechnical Society
关键词 磁场 球状线圈 均匀度 Biot—Savart定律 叠加原理 Magnetic field, spherical coils, homogeneity, Biot-Savart law, superposition principle
  • 相关文献

参考文献10

  • 1Ripka P. New directions in fluxgate sensors[J]. Journal of Magnetism and Magnetic Materials, 2000: 215-216, 735-739.
  • 2Ripka P, Billingsley S W. Crossfield effect at fluxgate.Sensors and Actuators A, 2000, 81 (1-3) : 176-179.
  • 3Brauer P, Merayo J M G, Nielsen O V, et al.Transverse field effect in fluxgate sensors[J]. Sensors and Actuators A, 1997, 59 (1-3): 70-74.
  • 4Nielsen O V, Brauer P, Primdahl F, et al. A high-precision triaxial fluxgate sensor for space application: layout and choice of material[J]. Sensors and Actuators A, 1997, 59 (1-3) : 168-176.
  • 5Primdahl F. The fluxgate magnetometer[J]. J. Phys. E:Sci. Instrum, 1979, 12 (4): 241-253.
  • 6Barker J R. An improved three-coil system for producing a uniform magnetic field[J]. J. Sci. Instrum,1950, 27 (7):197-199.
  • 7Rudd M E, Craig J R. Optimum spacing of square and circular coil pairs[J]. Rev. Sci. Instr.,1968, 39 (9) :1372-1374.
  • 8Robinson P R. Improvements to the system of four equiradial coils for producing a uniform magnetic field [J]. J. Phys. E: Sci. Instrum, 1983, 16(1): 39-42.
  • 9Everett J E, Osemeikhian J E. Spherical coils for uniform magnetic fields[J]. J. Phys. E: Sci. Instrum,1966,43 (7): 470-474.
  • 10Primdahl F, Jensen P A. Compact spherical coil for fluxgate magnetometer vector feedback[J]. J. Phys. E:Sci. Instrum, 1982, 15 (2) : 221-226.

同被引文献32

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部