期刊文献+

一种基于EM和分类损失的半监督主动DBN学习算法 被引量:2

Semi-supervised Active DBN Learning Algorithm Based on EM and Classification Loss
在线阅读 下载PDF
导出
摘要 对于建立动态贝叶斯网络(DBN)分类模型时,带有类标注样本数据集获得困难的问题,提出一种基于EM和分类损失的半监督主动DBN学习算法.半监督学习中的EM算法可以有效利用未标注样本数据来学习DBN分类模型,但是由于迭代过程中易于加入错误的样本分类信息而影响模型的准确性.基于分类损失的主动学习借鉴到EM学习中,可以自主选择有用的未标注样本来请求用户标注,当把这些样本加入训练集后能够最大程度减少模型对未标注样本分类的不确定性.实验表明,该算法能够显著提高DBN学习器的效率和性能,并快速收敛于预定的分类精度. A semi-supervised active DBN learning algorithm based on EM and classification loss is set forth for building Dynamic Bayesian Networks (DBN) classifier when it is difficult to get sufficient labeled training data. Although the EM algorithm of semi-supervised learning can use unlabeled examples to learn DBN, it often suffers from adding incorrect class information which affect classifier's accuracy. The classification loss method of active learning combined with EM results in maximal reduction of the uncertainty of classifying unlabeled examples through actively selecting useful unlabeled examples to label and adding them to training data. Experimental results show that the proposed algorithm can improve the efficiency and accuracy of DBN learner and can achieve expected classification accuracy quickly.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第4期656-660,共5页 Journal of Chinese Computer Systems
基金 中央民族大学青年教师科研基金项目 北京市教委重点学科共建项目.
关键词 动态贝叶斯网络 半监督学习 主动学习 EM算法 dynamic bayesian networks semi-supervised learning active learning expectation-maximization algorithm
  • 相关文献

参考文献19

  • 1Firedman Nir,Murphy Kevin,Russell Strart.Learning the structure of dynamic probabilistic networks[C].In:Morgan Kaufmann.Proceedings of Uncertainty in Artificial Intelligence (UAI-98),1998.139-147.
  • 2Tian Feng-zhan,Lu Yu-chang.Building macroeconomic system models with DBNs[J].Journal of Tsinghua University (Sci&Tech),2004,44(9):1256-1259.
  • 3王飞,刘大有,卢奕南,虞强源.基于遗传算法的动态Bayesian网结构学习的研究[J].电子学报,2003,31(5):698-702. 被引量:8
  • 4李庆中,苑春法,黄锦辉.基于小规模标注语料的机器学习方法研究[J].计算机应用,2004,24(2):56-58. 被引量:7
  • 5Tong Simon,Chang Edward.Support vector machine active learning for image retrieval[C].Proceedings of 9th ACM Multimedia Conference,2001.107-118.
  • 6宫秀军,孙建平,史忠植.主动贝叶斯网络分类器[J].计算机研究与发展,2002,39(5):574-579. 被引量:37
  • 7Roy Nicholas,McCallum Andrew.Toward optimal active learning through sampling setimation of error reduction[C].The 18th Int'l Conf on Machine Learning (ICML-2001),2001,411-448.
  • 8Lewis David D,Gale William A.A sequential algorithm for training text classifiers[C].In:Springer Verlag.Proceedings of 17th ACM International Conference on Research and Development in Information Retrieval,1994,3-12.
  • 9Argamon-Engleson Shlomo,Dagan Ido.Committee-based sample selection for probabilistic classifiers[J].Journal of Artificial Intelligence Research,1999,11:335-460.
  • 10Kothari Ravi,Jain Vivek.Learning from labeled and unlabeled data using a minimal number of queries[J].IEEE Transaction on Neural Networks,2003,14(6):1496-1505.

二级参考文献39

  • 1阎平儿 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000年..
  • 2[1]Mark Lauer, How Much is Enough? Data Requirements for Statistical NLP[J/OL]. arXiv: cmp lg/9509001.
  • 3[2]Nigam K, McCallum AK, Thrun S, e al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39(2/3):103-134.
  • 4[3]Blum A, Mitchell T. Combining labeled and unlabeled data with co training[A]. Proceedings of the 11th COLT[C], 1998.92-100.
  • 5[4]Collins M, Singer Y. Unsupervised models for named entity classification[A]. Proceedings of the 1999 Joint SIGDAT Conference on Empirical methods in NLP and Very Large Corpora[C]. College Park, MD,1999.90-99.
  • 6[5]Freund Y, Schapire RE. Experiments with a new boosting algorithm[A]. machine Learning: Proceedings of the Thirteenth International Conference[C], 1996. 148-156.
  • 7[6]Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods[A]. Proceedings of the 33rd Annual meeting of the Association for Computational Linguistics[C]. 1995. 189-196.
  • 8[7]Abney, Steven, Bootstrapping[A]. Proceedings of 40th Annualmeeting of the Association for Computational Linguistics(ACL 2002)[C]. Philadelphia, 2002.
  • 9[8]Nigam K, Ghani R. Analyzing the effectiveness and applicability of co training[A]. Proc. Of Ninth International Conference on Information and Knowledge management(CIKM)[C], 2000b.
  • 10[9]Cohn D, Atlas L, Ladner R. Improving generalization with active learning[J].Machine Learning, 1994,15(2), 201-221.

共引文献51

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部