期刊文献+

奇数阶边值问题正解的存在性与多重性

Existence and Multiplicity of Positive Solutions for Odd order Boundary Value Problems
原文传递
导出
摘要 利用锥拉伸锥压缩不动点定理,证明了在一定条件下,下列非线性奇数阶方程(-1)q+1u(2q+1)(t)=λa(t)f(u(t)),0 t 1,(-1)q+1u(2q+1)(t)=λa(t)f(u(t)),0 t 1,u(0)=u′(τ)=u″(1)=0u(2j+1)(0)=u(2j+1)(1)=0,j=1,2,…,q-1.单个和多个正解的存在性,其中λ>0,12<τ<1,q∈N.得到了λ的区间Λ,对一切λ∈Λ,该问题至少有一个正解,同样也得到了该问题至少有两个正解λ相应的区间. By using Krasnosel'skii fixed point theorem and under suitable conditions, we present the existence of single and multiple positive solutions for the following boundary value problems :{ (-1)^q+1 u(2q+1)(t)=λa(t)f(u(t)),0≤t≤1, u(0)=u'(τ)=u''(1)=0 u(2j+1)(0)=u(2j+1)(1)=0,j=1,2,…,q-1 1 where λ〉0,1/2〈r〈1,q∈N. We derive explicit interval of λ such that for any ),in the interval, the existence of single positive solutions for λ in appropriate interval is also discussed.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第6期132-141,共10页 Mathematics in Practice and Theory
基金 山西省自然科学基金(20051005)
关键词 正解 边值问题 不动点定理 positive solution boundary value problems fixed point theorem cone
  • 相关文献

参考文献12

  • 1Webb JRL.Positive solutions of some three-point boundary value problem via fixed point index theory[J].Nonlinear Analysis,2001,47 (7):4319-4332.
  • 2Yongping Sun,Lishan Liu.Solvability of a nonlinear second-order three-point boundary value problem[J].J Math Anal Appl,2004,296(1):265-275.
  • 3Wing-Sum Cheung,Jingli Ren.Twin positive solutions for quasi-liear multi-point boundary value problems[J].Nonlinear Analysis,2005,62(1):167-177.
  • 4Bing Liu.Positive solutions of three-point boundary value problems for the one-dimensional p-laplacian with infinitely many singularities[J].Applied Mathematics Letters,2004,17(6):655-661.
  • 5Liu B.Positive solutions of a nonlinear three-point boundary value problem[J].Applied Mathematics and Computation,2002.132(1):11-28.
  • 6Zhaoli Liu,Fuyi Li.Multiple positive solutions of nonlinear two-point boundary value problems[J].J Math Anal Appl,1996,203(3):610-625.
  • 7李福义,刘兆理.一类非线性算子方程的多重正解及其应用[J].数学学报(中文版),1998,41(1):97-102. 被引量:14
  • 8刘进生,李福义,逯丽清.带有超线性项的混合单调算子的不动点定理及其应用[J].数学物理学报(A辑),2003,23(1):19-24. 被引量:6
  • 9刘进生,李福义.混合单调算子的两点拉伸型不动点定理[J].数学学报(中文版),2003,46(6):1117-1122. 被引量:6
  • 10Avery R I,Henderson J.Tbree symmetric positive solutions for a second order boundary value problem[J].App Math Lett,2000,13(1):1-7.

二级参考文献16

  • 1郭大均.非线性泛函分析[M].济南:山东科技出版社,1985..
  • 2刘兆理,J Math Anal Appl,1996年,203卷,3期,610页
  • 3李福义,山西大学学报,1994年,17卷,4期,363页
  • 4孙经先,Appl Anal,1991年,42卷,263页
  • 5郭大钧,非线性积分方程,1987年
  • 6孙经先,数学年刊.A,1986年,7卷,5期,528页
  • 7郭大钧,非线性泛函分析,1985年
  • 8郭大钧,数学研究与评论,1984年,4卷,1期,55页
  • 9郭大钧,数学年刊.A,1983年,4卷,5期,645页
  • 10郭大钧,科学通报,1979年,24卷,193页

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部