期刊文献+

一种弱故障特征信号的提取方法及其应用研究 被引量:9

Research on a extraction method for weak fault signal and its application
在线阅读 下载PDF
导出
摘要 由S变换推导出的时序分解算法可以将一个任意的初始时间序列变换成一组突出时间序列局部信息的二维时间序列,该时序分解的可逆性表明了它可用于时域信号的滤波与特征提取。希尔伯特变换可有效地对时域信号进行解调,其实质是对原始信号作一次特殊的滤波。综合前述两种变换的优点,提出了结合希尔伯特变换及时序分解的弱故障特征信号提取算法,采用数值仿真实验及齿轮故障诊断进行了验证,结果表明,此种方法能有效地提取混在强背景信号中的弱故障特征信号。 The time series decomposition algorithm that is deduced by S transform can be employed to decompose an arbitrary initial time series into a two-dimensional time series, through which much prominence is given to the local message of the original time series. The convertibility of this decomposition indicates that it can be used for the time domain signal filtering and feature extraction. Hilbert transformation can be use to demodulate the time domain signal effectively, which executes a special filtering to original signal essentially. Combining the advantages of those two kinds of transforms, an algorithm for extracting the weak fault feature signal is proposed. The result received by numeric value simulation and the gear fault diagnosis experiment indicates that this algorithm is able to extract the weak fault feature signal mixed in the powerful backdrop signal effectively.
出处 《振动工程学报》 EI CSCD 北大核心 2007年第1期24-28,共5页 Journal of Vibration Engineering
基金 湖北省自然科学基金资助(2005ABA287)
关键词 故障诊断 弱信号 齿轮 包络分析 时间序列分析 fault diagnosis weak signal gear enveloped analysis time series analysis
  • 相关文献

参考文献5

  • 1Kanty H,Schreiber T.Nonlinear Time Series Analysis[M].Cambridge:Cambridge University Press,1997.
  • 2Staszewski W J,Tomlinson G R.Application of the wavelet transform to fault detection in a spur gear[J].Mechanical Systems and Signal Processing,1994,8(3):289-307.
  • 3Pinnegar C R,Mansinha L.A method of time-time analysis:the TT-transform.Digital Signal Processing[J].2003,(13):588-603.
  • 4Metin Akay.Nonlinear Biomedical Signal Processing.Dynamic Analysis and Modeling,Volume Ⅱ[M].New York:IEEE Press,2001.
  • 5Temujin G,Danilo P,Marc M.The delay vector variance method for determinism nonlinearity in time series[J].Physical D,2004,(190):167-176.

同被引文献74

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部