期刊文献+

镍钴转运酶NiCoT基因的克隆表达及基因工程菌对镍离子的富集 被引量:4

Cloning and Expression of the Nickel/Cobalt Transferase Gene in E.coli BL21 and Bioaccumulation of Nickel Ion by Genetically Engineered Strain
在线阅读 下载PDF
导出
摘要 利用PCR技术从Staphylococcus aureus ATCC6538基因组中扩增出大小为1053 bp的镍钴转运酶基因NiCoT gene,将其连接到pET-3c载体上构建重组质粒,并转化至E.coli BL21.筛选阳性菌并经酶切分析和PCR扩增双重鉴定.核苷酸序列测定及分析结果与GenBank中报道的同类基因相似性高达97%以上,表明其具有正确的NiCoT基因核苷酸序列.重组菌的SDS-PAGE结果图谱中,在相对分子量为39000附近有特异性蛋白条带,大小符合预测值,表明NiCoT基因在E.coli BL21中成功表达.基因工程菌在IPTG用量为1.00 mmol.L-1,诱导时间为4 h的条件下培养对镍离子的富集能力最高.在不同镍离子浓度时,基因工程菌对溶液中Ni2+的平衡富集量为11.33 mg.g-1,与原始宿主菌相比提高了3倍.对基因工程菌吸附镍和钴的实验表明,Staphylococcus aureus ATCC6538的NiCoT对镍具有较高的特异性和富集容量,属于第Ⅲ类镍钴转运酶. 1 053 bp of the nickel/cobalt transferase gene, NiCoT gene, from Staphylococcus aureus ATCC6538 was amplified by PCR and ligated into vector pET-3c. The recombined plasmid was constructed and transferred into E. coli BL21 at appropriate temperature. The recombined strain was isolated and identified by restriction enzyme digestion and PCR amplification. Nucleotide sequence analysis showed that the identity was more than 97% between the nickel/cobalt transferase gene from S. aureus ATCC6538 and the reported gene sequence of other species or subspecies of S. aureus at GenBank. There was a characteristic protein strip near the relatively molecular weight of 39 000 in the SDS-PAGE picture, which was identical to the expected value. The result demonstrated that the NiCoT gene of S. aureus had been successfully expressed in E. coli BL21. The E. coli BI21 containiog the NiCoT gene had the highest bioaccumulation quantity when induced with 1.00 mmol. L^-1 IPTG for 4 h. The quantity of equilibrium accumulation of the genetically engineered E. coli BL21 was 11.33 mg·g^-1 , which was 3 times more than that of the original E. coli BL21 at different nickel concentrations. The NiCoT of S. aureus ATCC6538 was a highly selective and accumulative nickel transporter and belonged to the class Ⅲ of the nlckel/cobalt transferase.
出处 《环境科学》 EI CAS CSCD 北大核心 2007年第4期918-923,共6页 Environmental Science
基金 国家自然科学基金项目(50278040)
关键词 金黄色葡萄球菌 镍钴转运酶 克隆与表达 生物富集 S. aureus nickel/cobalt transferase cloning and expression bioaccumulation
  • 相关文献

参考文献16

  • 1尹华,叶锦韶,彭辉,张娜,谢丹平.酵母菌-活性污泥法吸附处理含铬电镀废水的性能[J].环境科学,2004,25(3):61-64. 被引量:30
  • 2Donmez G,Aksu A.Bioaccumulation of copper(Ⅱ) and nickel(Ⅱ)by the nor-adaptd growing Candida sp.[J].Water Research,2001,35(6):1425 ~ 1436.
  • 3Padamavathy V,Vasudevan P,Dhingra S C.Biosorption of nickel(Ⅱ) ions on Baker' s yeast[J].Process Biochemistry,2003,38(10):1389 ~ 1395.
  • 4Abu Al-Rub F A,El-Nass M H,Benyahia F,et al.Biosorption of nickel on blank alginate beads,free and immobilized algal cells[J].Process Biochemistry,2004,39(11):1767 ~ 1773.
  • 5William C J,Aderhold D,Edyvean R G J.Comparison between biosorbents for the removal of metal of metal ions from aqueous solutions[J].Water Research,1998,32(1):216 ~ 224.
  • 6Chen S L,Wilson D B.Genetic engineering of bacteria and their potential for Hg^2+ bioremediation[J].Biodegration,1997,8:97~103.
  • 7Chen S L,Kim E,Wilson D B.Hg^2+ removal by genetically engineered E.coli in a hollow fiber bioreactor[J].Biotechnology Progress,1998,14:667 ~ 671.
  • 8Krishnaswamy R,Wilson D B.Construction and characterization of an Escherichia coli strain genetically engineered for Ni (Ⅱ)bioaccumulation[J].Applied and Environmental Microbiology,2000,66(12):5383 ~ 5386.
  • 9Mulrooney S B,Hausinger R P.Nickel uptake and utilization by microorganisms[J].FEMS Microbiology Review,2003,27:239 ~261.
  • 10Eitinger T,Mandrand B.Nickel transport systems in microorganisms[J].Archives of Microbiology,2000,173:1 ~ 9.

二级参考文献20

  • 1隋广超,胡美浩.影响大肠杆菌中外源基因表达的因素[J].生物化学与生物物理进展,1994,21(2):128-132. 被引量:55
  • 2[1]Ellen J O Flaherty,Brent D Kerger,Sean M Hays. A Physiologically Based Model for the Ingestion of Chromium(Ⅲ) and Chromium(Ⅵ) by Humans[J]. Toxicological Sciences,2001,60 (2):196~213.
  • 3[2]Andre S Ellis,Thomas M Johnson,Thomas D Bullen. Chromium Isotopes and the Fate of Hexavalent Chromium in the Environment[J]. Science,2002,295(15):2060~2062.
  • 4[3]Terry P A,Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans[J]. Chemosphere,2002,47(3):249~255.
  • 5[4]孟祥和,胡国飞.重金属废水处理,第二版[M]. 北京:化学工业出版社,2001. 12.
  • 6[5]Tenorio J A S, D C R Espinosa. Treatment of chromium plating process effluents with ion exchange resins[J]. Waste Management,2001,21 (7):637~642.
  • 7[6]Qin C Q,Du Y M,Zhang Z Q, et al. Adsorption of chromium (VI) on a novel quaternized chitosan resin[J]. Journal of Applied Polymer Science,2003,90 (2):505~510.
  • 8[8]Nourbakhsh M N,Kilicarslan S,Ilhan S, et al. Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp[J]. Chemical Engineering Journal,2002,85(2):351~355.
  • 9[9]Gupta V K,Shrivastava A K,Neeraj Jain. Biosorption of Chromium(VI) from Aqueous Solutions by Green Algae Spirogyra Species[J]. Water Research,2001,35(17):4079~4085.
  • 10[10]Olga Muter,Aloizijs Patmalnieks,Alexander Rapoport. Interrelations of the yeast Candida utilis and Cr(VI): metal reduction and its distribution in the cell and medium[J]. Process Biochemistry,2001,36 (10):963~970.

共引文献35

同被引文献97

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部