期刊文献+

离焦模糊图像的自适应滤波及逆滤波器复原 被引量:7

Adaptive filtering and counter filter restoration for defocus blurred image
在线阅读 下载PDF
导出
摘要 在微操作中,显微视觉系统获取的图像通常是离焦模糊图像。根据最小二乘原理和回归模型设计自适应滤波器,用于消除图像噪声,提高图像的信噪比;离焦模糊图像的退化模型可用圆盘函数描述,利用模糊图像频域的零点位置来估计圆盘函数的模糊参数;采用基于简化Wiener滤波的逆滤波器方法对模糊图像进行复原。对算法进行了仿真和实验分析,结果表明,该方法能够以较少的运算时间代价获取较好的复原效果。 Images acquired by the micro-vision system are usually defocus blurred images in micromanipulation. An adaptive filter based on the principle of least squares and regression model was designed, which was employed to remove the noise of an image and to improve the signal-to-noise ratio. The defocus blurred image can be depicted by uniformly distributed function on circular support region, and the blur parameter of the function can be estimated using zeros position in blurred image in frequency domain. Finally, the method of counter-filter based simplified Wiener filter was applied to restore blurred image. Some experiments were performed to validate the performance of the algorithm, and the experimental results show that the approaches can obtain the good restoration effect in less computation time
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第4期105-108,共4页 Opto-Electronic Engineering
基金 湖南省自然科学基金资助项目(04JJ6035) 湘潭市科技计划项目(GY2006-07)
关键词 离焦图像 图像复原 自适应滤波 逆滤波器 WIENER滤波 Defocus image Image restoration Adaptive filtering Counter-filter Wiener filter
  • 相关文献

参考文献11

  • 1EDMUND Y L.Digital restoration of defocus images in the wavelet domain[J].Applied Optics,2002,141(26):4806-4811.
  • 2TONAZZINI A.Blur identification analysis in blind image deconvolution using Markov random fields[J].Pattern Recognition and Image Analysis,2001,11(4):699-710.
  • 3WILLIAM K,FARAMARZ D.Fast computational techniques for Pseudoinverse and Wiener image restoration[J].IEEE Trans.on Computer,1997,26(6):571-580.
  • 4NDJOUNTCHE T,UNBEHAUEN R.Image restoration:the wavelet-based approach[J].Int.J.of Pattern Recognition and Artificial Intelligence,2003,17(1):151-162.
  • 5CALATSANOS N,MESAROVIC V,MOLINA R.Hierarchical Bayesian image restoration for partially-known blurs[J].IEEE Trans.on Image Process,2000,9(10):1784-1797.
  • 6PAVLOVIC G,TEKALP A M.Maximum likelihood parametric blur identification based on a continuous spatial domain model[J].IEEE Trans.on Image Process,1992,1(10):496-504.
  • 7LAY K T,KATASGGELOS A K.Image identification and restoration based on the expectation-maximization algorithm[J].IEEE Trans.ASSP,1990,38(7):1180-1191.
  • 8郑楚君,李榕,常鸿森.离焦模糊数字图像的Wiener滤波频域复原[J].激光杂志,2004,25(5):57-58. 被引量:27
  • 9吴魁,任丹,吴建华.运动模糊图像的Moore-Penrose逆法恢复[J].江西科学,2002,20(4):195-198. 被引量:5
  • 10谢晖,孙立宁,荣伟彬,陈立国.微操作机器人的显微视觉自标定方法[J].光电工程,2005,32(3):32-35. 被引量:4

二级参考文献17

  • 1周赟,李久贤,夏良正.基于区域生长的红外图像分割[J].南京理工大学学报,2002,26(S1):75-78. 被引量:17
  • 2王新洲,刘经南,陶本藻.稳健最优不变二次无偏估计[J].武汉测绘科技大学学报,1995,20(3):240-245. 被引量:11
  • 3陈自宽.求解任意样本集的综合鉴别函数的两步伪逆法[J].数值计算与计算机应用,1996,17(1):8-13. 被引量:1
  • 4肖海,罗明,王春和,叶声华.用“消隐点”法标定线结构光三维视觉传感器[J].光电工程,1996,23(3):53-58. 被引量:10
  • 5毕树生 宗光华.用于转基因技术的微操作机器人系统的体系结构[J].中南工业大学学报,2000,31:407-410.
  • 6FAHLBUSCH S, FATIKOW S. Implementation of self-sensing SPM cantilevers for nano-force measurement in microrobotics[J].Ultramieroseopy, 2001, 86(1-2): 181-190.
  • 7MARDANOV A, SEYFRIED J, FATIKOW S. An automated assembly system for a microassembly station [J]. Computers in Industry, 1998, 38(12): 93-102.
  • 8FERREIRA A, CASSIER C, HIRAI S. Automatic microassembly system assisted by vision servoing and virtual reality[J].IEEE/ASME Translations on Mechatronlcs, 2004, 9(2): 321-333.
  • 9阮秋倚.数字图像处理[M].北京:电子工业出版社,2001.312-316.
  • 10Chang M M, Tekalp A M, Erdem A T. Blur indentification using the bispectrum[J]. IEEE Trans on Signal Processing, 1991,39(10) :2323-2325.

共引文献34

同被引文献65

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部