期刊文献+

基于无先导卡尔曼滤波的RBFN训练算法研究 被引量:6

Training radial basis neural networks with the unscented Kalman filter
在线阅读 下载PDF
导出
摘要 提出了应用无先导卡尔曼滤波器(UKF)来训练径向基神经网络(RBFN)的新方法。与广义卡尔曼滤波器(EKF)和双重卡尔曼滤波器(DEKF)对函数的一阶近似不同,UKF对非线性函数采用二阶近似展开,而且最重要的一点是不必求取系统的雅克比矩阵,从而大大减小计算量。本文对时间序列预测及分类问题进行了仿真,结果证实了该方法的有效性和快速性。 A new method is proposed for training radial basis function networks (RBFN) using the unscented Kalman filter (UKF). In contrast to the extended Kalman filter (EKF) and the dual extended Kalman filter (DEKF), which extend the nonlinear functions using a first order approximation, the UKF uses a second order approximation. The most important consequence is that the algorithm does not require the Jacobi matrix of the system to be calculated, thus reducing the calculation complexity and resulting in considerable savings in time. Simulation results in the fields of chaotic time series prediction and classification problems demonstrate both the validity and faster speed of the proposed method.
出处 《北京化工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第2期221-224,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 教育部留学回国人员科研启动基金 北京市教委共建项目建设计划(XK100100435) 北京化工大学青年教师基金(QN0625)
关键词 径向基神经网络 卡尔曼滤波器 无先导卡尔曼滤波器 RBFN Kalman filter unscented Kalman filter
  • 相关文献

参考文献11

  • 1SCHWENKER F,KESTLER H A,PALM G,et al.Three learning phase for radial basis funciton networks[J].Neural Networks,2001,14(4-5):439-458.
  • 2SARIMVEIS H,DOGANIS P,ALEXANDRIDIS A,et al.A classification technique based on radial basis function neural networks[J].Advances in Engineering Software,2006,37(4):218-221.
  • 3KARAYIANNI N.Reformulated radial basis neural networks trained by gradient descent[J].Neural Networks,1999,3(5):657-671.
  • 4PIOVOSO M,PHILLIP A,LAPLANTE L,et al.Kalman filter recipes for real-time image processing[J].Real-Time Imaging,2003,9(6):433-439.
  • 5SIMON D.Kalman filtering for fuzzy discrete time dynamic systems[J].Applied Soft Computing Journal,2003,3(3):191-207.
  • 6BOJE E,PETRICK M.Application of the extended Kalman filter to a lysine hydrochlorination process[J].Control Engineering Practice,2000,8(3):291-297.
  • 7JULIER S,HLMANN J.A new approach for filtering nonlinear systems[C].Piscataway,NJ,USA:IEEE Press,1995:1628-1632.
  • 8LI Peihua,ZHANG Tianwen,MA Bo.Unscented kalman filter for visual curve tracking[J].Image and Vision Computing,2004,22(2):157-164.
  • 9SIMON D.Training radial basis neural networks with the extended kalman filter[J].Neurocomputing,2002,48(1-4):455-475.
  • 10IULIAN B C.RBF networks training using a dual extended kalman filter[J].Neurocomputing,2002,48(1-4):609-622.

同被引文献54

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部