摘要
基于牛顿-拉普森迭代对悬索体系的找形进行了研究,同时采用零阶优化算法对迭代进行优化控制,并对影响求解精度的因素进行了分析。在此基础上,针对恒载状态下的润扬大桥悬索桥进行了算例分析,并与膜理论计算结果和竣工试验中的实测数据进行了比较。算例表明,利用优化算法对控制点的标高变化进行控制,可以更加准确地得到主缆的线形及其内力。该方法不仅可以应用于悬索桥主缆的找形,同样也适用于其它大跨缆索结构的找形和施工控制。
To find the form of suspension cables precisely, the Newton-Raphson iteration is used and the zero order optimization arithmetic is also dedicated to control the procedure. Meanwhile, the factors that influence the precision of solution are analyzed. Based on this, the form-finding of Runyang suspension bridge under dead load is taken as an example, and the results are compared with those of membrane theory and data from field test. The results show that through the control of the coordinate of the predefmed points, the more precise solution can be achieved. This method can be used in form-finding and construction control on main cables of suspension bridge and other long-span cable structures.
出处
《工程力学》
EI
CSCD
北大核心
2007年第4期142-146,158,共6页
Engineering Mechanics
基金
国家自然科学基金重点项目(50538020
50608017)
高等学校科技创新工程重大项目培育资金项目(704024)
关键词
牛顿-拉普森迭代
优化算法
悬索
几何形状
非线性
Newton-Raphson iteration
optimization arithmetic
suspension cable
geometrical form
nonlinearity