期刊文献+

群体异常检测(英文) 被引量:4

Crowd abnormality surveillance
在线阅读 下载PDF
导出
摘要 对拥挤地区人群行为的检测对于多种安全任务都至关重要。这个问题包括2个部分:对拥挤程度的估计和对异常的检测。本文定义了一个运动特征来进行群体建模和实时检测。在此基础上,通过分析大量的运动信息。提出了一种通过自定义的能量函数来评估观测区域内的拥挤程度和异常事件检测的新方法。此方法被用于地铁的视频监控系统中,具有良好的效果。 Surveillance on pedestrian flows in crowded areas is of significance for various security tasks. This problem involves two parts: evaluation of crowdedness and detection of abnormality. This paper defines a motion feature to deal with crowd modeling and processing in the real-time surveillance. Based on it, a new approach is presented to evaluate the level of crowdedness and monitor abnormal events of the scene according to an analysis on the amount of motion information. The result of a metro subway video surveillance system demonstrated the effectiveness of this method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第4期614-620,共7页 Chinese Journal of Scientific Instrument
基金 Supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region(CUHK4163 /03E) Hong Kong Innovation and Technology Fund under grant ITS/140 /01
关键词 群体检测 运动特征 群体能量 群体异常 crowd surveillance motion feature crowd energy crowd abnormality
  • 相关文献

参考文献18

  • 1BANDINI S,FEDERICI M L,VIZZARI G.A methodology for crowd modelling with situated cellular agents[C].WOA 2005,Camerino,Italy,2005:91-98.
  • 2MUSSES R,BABSKI C,CAPIN T,et al.Crowd Modelling in collaborative virtual environments[J].ACM Symposium on Virtual Reality Software and Technology,Taipei,Taiwan,1998:115-123.
  • 3ULICNY B,THALMANN D.Crowd simulation for interactive virtual environments and VR training systems[J].Eurographic Workshop on Computer Animation and Simulation,Manchester,UK,2001:163-170.
  • 4ANDRADE E L.Simulation of crowd problems for computer vision[EB/OL].Technical Report,The University of Edinburgh,Available:homepages.inf.ed.ac.uk/rbf/PAPERS/vcrowds.pdf (EDI-INF-RR-0493).
  • 5CUPILLARD F,AVANZI A,BREMOND F,et al.Video understanding for metro surveillance[C].IEEE International Conference on Networking,Sensing and Control,Taipei,Taiwan,2004:186-191.
  • 6CHEN Y F,ZHONG Z,XU Y S.Multi-agent based surveillance[C].IEEE International Conference on Intelligent Robots and Systems (IROS06),Beijing,China,2006:2810-2815.
  • 7JLIPTON A.Intelligent video surveillance in crowds[EB/OL].Technical Report,ObjectVideo Ltd.,Available:www.dbvision.net/objects/pdf/whitepapers/FlowControl.pdf.
  • 8MARANA A N,VELASTIN S A,COSTA L F,et al.Automatic estimation of crowd density using texture[C].International Workshop on Systems and Image Processing(IWSIP97),Poland,1997.
  • 9RAHMALAN H,NIXON M S,CARTER J N.On crowd density estimation for surveillance[C].Conferrence of Imaging for Crime Detection and Prevention (ICDP06),London,UK,2006.
  • 10SHI J,TOMASI C.Good feature to track[C].IEEE Conference on Computer Vision and Pattern Recognition(CVPR94),Seattle,U.S.,1994.

同被引文献61

  • 1李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 2POPOOLA O P, WANG K. Video-based abnormal hu- man behavior recognition-a review [ J ], IEEE Transac- tions on System, Man, and Cybernetics Part C, 2012,42 (6) : 865-878.
  • 3COLLINS R T, LIPTON A J, KANADE T. A system for video surveillance and monitoring [ C]. Proceedings of the 1999 American Nuclear Society (ANS) Eighth In- ternational Topical Meeting on Robotic and Remote Sys- tems, Pittsburgh, PA, USA ,25-29April, 1999.12-19.
  • 4HARITAOGLU I, HARWOOD D, DAVIS L S. W4 : A real time system for detecting and tracking people [ C ]. Proceedings of the 1998 IEEE International Conference on Computer Vision and Pattern Recognition, Santa Bar- bara, CA, USA, 23-25June, 1998,962-969.
  • 5HUANG K,TAN T. Vs-star: a visual interpretation sys- tem for visual surveillance[ J]. Pattern Recognition Let- ters,2010,31 ( 15 ) : 2265-2285.
  • 6University of California, San Diego. UCSD Anomaly De-tection Dataset [ EB/OL ]. http ://www. svcl. ucsd. edu/ project-s/anomaly/dataset, html. 2010-10-10.
  • 7University of Minnesota. UMN abnormal events detection dataset [ EB/OL ]. http ://mha. cs. umn. edu/proj _ e- vents, shtml. 2009-4-12.
  • 8ADAM A, RIVLIN E, SHIMSHONI I, REINITZ D. Ro- bust real-time unusual event detection using multiple fixed-location monitors [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2008,30 ( 3 ) : 555-560.
  • 9TAMRAKAR A, ALI S, YU Q, et al. Evaluation of low- level features and their combinations for complex event detection in open source videos [ C ]. Proceedings of the 2012 IEEE InlLernational Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16- 21June,2012 : 3681-3688.
  • 10KWON J, LEE K M. A unified framework for event sum- marization and rare event detection [ C ]. Proceedings of the 2012 IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21June ,2012 : 1266-1273.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部