期刊文献+

基于QBC主动学习方法建立电信客户信用风险等级评估模型 被引量:2

A credit risk evaluation model for telecom clients based on query-by-committee method of active learning
在线阅读 下载PDF
导出
摘要 电信客户信用风险等级评估是对电信客户的信用风险进行等级分类.针对建立客户信用风险等级分类模型时,大量带有类标注数据难以获得的问题,提出了基于主动学习的分类器建模方法,并对基于QBC(委员会投票选择)的主动学习算法进行改进以提高分类器的预测精度.通过对实际电信客户数据进行信用风险等级建模实验,结果表明:应用新算法,分类器使用了较少的带类标签样本数据,达到了与被动学习相同的精度,大大降低了信用专家评估数据的工作量. Evaluating telecom clients' credit risk rate is classifying their credit risk level. An approach based on active learning was proposed for solving the insufficient labeled data problem in building a credit risk rate classifier. The new QBC (query-by-committee, QBC) method of active learning was presented to improve the classifier's accuracy. By applying the actual telecom clients data in the experiment, the results show that the model built by the new algorithm with less labeled training data can reach the same accuracy as passive learning. This can reduce annotation cost for credit evaluation experts.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2007年第4期442-446,共5页 Journal of University of Science and Technology Beijing
基金 北京市教委重点学科共建项目资助 国家民委"十一五"科研项目(No.07ZY07)
关键词 电信客户 信用等级 主动学习 投票 相对熵 telecom clients credit rating active learning vote Kullback-Leibler divergence
  • 相关文献

参考文献9

  • 1中国移动通信集团公司.中国移动经营分析系统业务规范v2.0.北京:中国移动通信集团公司,2002
  • 2宫秀军,孙建平,史忠植.主动贝叶斯网络分类器[J].计算机研究与发展,2002,39(5):574-579. 被引量:37
  • 3Riccardi G.Active learning:theory and applications to automatic speech recognition.IEEE Trans Speech Audio Process,2005,13 (4):504
  • 4Cohn D A,Ghahramani Z,Jordan M I.Active learning with statistical models.J Artif Intell Res,1996,4:129
  • 5Lewis D D,Gale W A.A sequential algorithm for training text classifiers∥ Proceedings of 17th {ACM} International Conference on Research and Development in Information Retrieval.Dublin:Springer Verlag,1994:3
  • 6Seung H S,Opper M,Sompolinsky H.Query by committee∥Proceedings of the 15th Annual ACM Workshop on Computational Learning Theory.California:Morgan Kaufmann,1992:287
  • 7Freund Y,Seung H S,Samir E,et al.Selective sampling using the query-by-committee algorithm.Mach Learn,1997,28:133
  • 8McCallum A K,Nigam K.Employing EM and pool-based active learning for text classification∥Proceeding of the 15th International Conference on Machine Learning.Madison:Morgan Kaufmann,1998:350
  • 9Argamon-Engleson S,Dagan I.Committee-based sample selection for probabilistic classifiers.J Artif Intell Res,1999,11:335

二级参考文献1

  • 1史忠植.知识发现[M].北京:清华大学出版社,2000..

共引文献36

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部