期刊文献+

铝钛二元合金凝固过程数学模型的建立及应用

Modeling of Solidification of Al-Ti Binary Alloy and Its Application in Grain Refinement
在线阅读 下载PDF
导出
摘要 针对Ti〈0.15%的Al-Ti二元合金,基于三个假设:一个晶核生长过程中所产生的成分过冷为邻近晶粒的形核提供所需的形核过冷度;两个形核事件发生的距离相当于一个晶粒尺寸;忽略界面前沿温度梯度和凝固过程中结晶潜热的析出,在此基础上建立了Al-Ti二元合金凝固过程的数学模型并进行数值计算,计算了成分过冷度与相对晶粒尺寸。应用于电解低钛铝合金和熔配铝钛合金,发现电解低钛铝合金在试验室条件下的形核过冷度ΔTn=0.5~1.0K,低于传统熔配加钛的Al-Ti二元合金(ΔTn=0.8~1.5K)。对于研究电解低钛铝基合金的细化机理提供了数值基础。 A mathematical model for the solidification of Al-Ti binary alloy with titanium content less than 0.15 wt% is developed. In the model, it is assumed that the constitutional undercooling during a grain growth is equivalent to the undercooling required for nucleation of another adjacent grain; the distance between two nucleation events is defined as the relative grain size in the final microstructure; the temperature gradient at the solid-liquid interface and the latent heat are neglected. Using the model, the constitutional undercooling and the relative grain size of the electrolytic low-titanium aluminium alloy and the traditional Al-Ti alloy are calculated. Model calculation shows that the nucleation undercooling is about 0.5-1.0 K for the electrolytic low titanium aluminum alloy and 0.8-1.5 K for the traditional one. The nucleation undercooling of the electrolytic low titanium aluminum alloys is 0.3-0.5 K lower than that of the traditional Al-Ti binary alloy. This can explain the favorable refining effects of the electrolytic low-titanium aluminium alloy. The modeling results can be used to investigate the grain refinement mechanism for the electrolytic low-titanium aluminium alloy.
出处 《铸造技术》 CAS 北大核心 2007年第1期130-134,共5页 Foundry Technology
关键词 电解低钛铝合金 成分过冷 形核过冷度 数学模型 Electrolytic low-titanium aluminium alloy Constitutional undercooling Nucleation undercooling
  • 相关文献

参考文献5

二级参考文献49

  • 1张明俊.铝-钛-硼中间合金的两步生产法[J].轻金属,1989(11):51-55. 被引量:9
  • 2冯庆玲,王昶明.Al-Ti-C中间合金中TiC粒子的失效问题[J].清华大学学报(自然科学版),1994,34(5):106-111. 被引量:10
  • 3刘相法,边秀房,李辉,马家骥.AlTiB中间合金细化效果的组织遗传效应[J].金属学报,1996,32(2):149-153. 被引量:53
  • 4[3]Easton M A,Stjohn D H.Grain Refinement of Aluminum Alloys: Part Ⅰ.The Nucleate and Solute Paradigms - A Review of the Literature.Metallurgical and Materials Transactions,1999,30A(6):1 613~1 623
  • 5[5]Zhang B Q, Li J G, Ma H T et al. A New Development of Al-Ti-C Grain Refining Master Alloy. Trans. Nonferrous Met.Sci.China,2000,10(3):298~303
  • 6[6]Gerloff R.Reif W,Heyroth W et al.The Agglomeration of The TiB2 Phase Which Has Been Added To Molten Aluminum for The Grain Refinement.Metall.,1996,50(2):97~101
  • 7[7]Easton M A,Stjohn D H. A Model of Grain Refinement Incorporation Alloy Composition And Potency of Heterogeneous Nucleant Particles.Acta Mater.,2001,49:1 867~1 878
  • 8[8]Johnsson M,Backerud L.The Influence of Composition On Equiaxed Crystal Growth Mechanisms and Grain Size in Al Alloys. Z. Metallkd.,1996,87(3):216~220
  • 9[9]Easton M A.Stjohn D H.Grain Refinement of Aluminum Alloy: Part Ⅱ. Confirmation of,and a Mechanism for the Solute Paradigm.Metallurgical and Materials Transactions, 1999,30A(6):1 625~1 633
  • 10[1]Guzowski M M,Sigworth G K,Sentner D A.The role of boron in the grain refinement of aluminum with titanium[J].Metall Trans,1987,18A(4):603-619.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部