期刊文献+

一种基于遗传算法和卡尔曼滤波的运动目标跟踪方法 被引量:15

Tracking of moving object based on genetic algorithm and Kalman filter
在线阅读 下载PDF
导出
摘要 提出了一种基于遗传算法和卡尔曼滤波的运动目标跟踪方法。该方法利用卡尔曼滤波预测目标中心在下一帧图像中可能出现的位置,以该位置为中心,建立候选的目标搜索区域。以跟踪目标的灰度统计特征为模板,以Bhattacharyya系数来度量目标模板与候选目标区域的相似性,并以此相似性作为遗传算法适应度函数,以候选目标中心坐标作为参数编码,利用遗传算法进行匹配搜索,最终获得最佳候选区域中心位置,同时以该位置作为观测值,进行下一帧预测。实验结果表明,该方法具有较好的实时性和鲁棒性。 A real-time tracking of moving object method based on Genetic Algorithm (GA) and Kalman filter was proposed. The possible position of moving target center in the next frame image was predicted by Kalman filter, and a search region of target was generated around the center position. Genetic Algorithms (GA) was utilized to search the best position in the region. The GA fitness function was Bhattacharyya coegicient between the gray features of the target template and the candidate area's, and the parameter code was the coordinates of candidate center position. Finally, the best position was used as an observed value for next prediction. The experimental results show that the method is effective and robust.
出处 《计算机应用》 CSCD 北大核心 2007年第4期916-918,共3页 journal of Computer Applications
关键词 遗传算法 卡尔曼滤波 目标跟踪 Genetic Algorithm (GA) Kalman filter target tracking
  • 相关文献

参考文献9

  • 1HARITAOGLU I,HARWOOD D,DAVIS L.W4:Real-time surveillance of people and their activities[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
  • 2COLLINS R,LIPTON A,KANADEAND T,et al.A system for video surveillance and monitoring:VSAM final report,CMU-RI-TR00-12[R].Carnegie Mellon University,2000.
  • 3BASCLE B,DERICHE R.Region tracking through image sequences[A].Proceedings of IEEE International Conference on Computer Vision[C].Boston,MA,1995.302-307.
  • 4KIRCHERG KJ,JESORSKY O,FRISCHHOL RW.Genetic model optimization for Hausdorff distance-based face localization[A].Proceedings of International ECCV 2002 Workshop on Biometric Authentication[C].Copenhagen,Denmark,2002.103-111.
  • 5陈允杰,张建伟.遗传算法在Snake模型中的应用[J].计算机应用,2004,24(5):80-81. 被引量:12
  • 6WELCH G,BISHOP G.An introduction to the Kalman filter[EB/OL].http://www.cs.unc.edu/~ welch/kalman/kalmanIntro.html,2006 -08-10.
  • 7VIGUS SA,BULL DR,CANAGARAJAH CN,et al.Video object tracking using region split and merge and a Kalman filter tracking algorithm[J].Image Processing,2001,(1):650-653.
  • 8COMANICIU D,RAMESH V,MEER P.Real-time tracking of nonrigid objects using mean shift[J].IEEE Conference on Computer Vision and Pattern Recognition[C].2000,2:142-149.
  • 9FISHER R.CAVIAR test case scenarios[DB/OL].http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/,2006 -11 -12.

二级参考文献5

  • 1[1]Kass M,Witkin A,Terzopulos D. Snakes:Active contour models[J]. International Journal of Computer Vision,1987,1(4):321-331.
  • 2[2]Leroy B,Herlin I,Cohen LD. Multi-resolution algorithm for active contour models[A]. 12th Intenatioanl Conference Analysis and Optimization of System[C]. 1996,12:58-65.
  • 3[3]Xu G,Segawa E,Tsuji S. Robust active contours with insensitive parmenters[J]. Pattern Recoginetion,1994,27(7)879-884.
  • 4[4]McInerney T,Terzopoules D. Toplogically adaptable snakes[D]. Department of computer science University of Tornoto.
  • 5[5]McInerney TJ. Topologically adaptable deformable models for medical image analysis[D]. Phd thesis Department of computer science.University of Tornoto.

共引文献11

同被引文献101

引证文献15

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部