摘要
对于二元向量值有理插值的计算,定义一个二元实代数多项式,利用两个多项式相等的充要条件,通过求解线性方程组确定引入的多个参数,并由此给出二元向量值有理插值公式,在相应的向量值有理插值函数存在时,当任意指定一个实二元多项式作为分母时,都可以相应的确定其分子的具体表达式;最后用实例来说明它的有效性。
For the calculation of bivariate vector-valued rational interpolants, multi-parameters are introduced and an algebraic polynomial with two elements is defined. By using the necessary and suffi- cient conditions for polynomials identity, linear equations are solved to determine the parameters and the formula of the vector-valued rational interpolant is given. With the existence of the corresponding vector-valued rational interpolant, when the denominator is an assigned real polynomial with two elements, the expression of its numerator can determined. The validity of the method is illustrated by examples.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第2期240-243,共4页
Journal of Hefei University of Technology:Natural Science
关键词
二元向量值有理插值
参数
方程组
bivariate vector-valued rational interpolant
parameter
system of equations