期刊文献+

一种求二元向量有理插值函数的方法 被引量:4

Method for the determination of bivariate vector-valued rational interpolants
在线阅读 下载PDF
导出
摘要 对于二元向量值有理插值的计算,定义一个二元实代数多项式,利用两个多项式相等的充要条件,通过求解线性方程组确定引入的多个参数,并由此给出二元向量值有理插值公式,在相应的向量值有理插值函数存在时,当任意指定一个实二元多项式作为分母时,都可以相应的确定其分子的具体表达式;最后用实例来说明它的有效性。 For the calculation of bivariate vector-valued rational interpolants, multi-parameters are introduced and an algebraic polynomial with two elements is defined. By using the necessary and suffi- cient conditions for polynomials identity, linear equations are solved to determine the parameters and the formula of the vector-valued rational interpolant is given. With the existence of the corresponding vector-valued rational interpolant, when the denominator is an assigned real polynomial with two elements, the expression of its numerator can determined. The validity of the method is illustrated by examples.
作者 程荣 朱功勤
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期240-243,共4页 Journal of Hefei University of Technology:Natural Science
关键词 二元向量值有理插值 参数 方程组 bivariate vector-valued rational interpolant parameter system of equations
  • 相关文献

参考文献7

二级参考文献15

  • 1顾传青,陈之兵.矩阵有理插值及其误差公式[J].计算数学,1995,17(1):73-77. 被引量:33
  • 2王仁宏.数值有理逼近[M].上海科学技术出版社,1980.1-25.
  • 3Zhu G Q,Tan J Q. A note on matrix-valued rational interpolants [J]. Compute Appl Math, 1999, (110): 129- 140.
  • 4Breziski C. Rational approximation to formal power series [J]. J Approx Theory, 1979, (25) :295-317.
  • 5Antoulas A C. Rational interpolation and euclidean algorithm[J]. Linear Algebra Appl, 1998, (108): 157- 171.
  • 6Schneider C,Werner W. Some new aspects of rational interpolation[J]. Math Comput, 1986, (47): 285- 299.
  • 7Sorokin V N,Iseghem T V. Matrix continued fractions[J].J Applox Theory, 1999, (46) :237-257.
  • 8蒋尔雄 高坤敏 吴景琨.线性代数[M].北京:人民教育出版社,1979..
  • 9Graves-Morris P R. Vector valued rational interpolants (I)[J]. Numer Math, 1983, 41(2): 331-334.
  • 10Zhu Xiao-lin, Zhu Gong-qin. A method for directly finding the denominator value of rational interpolants[J]. J.Comput. Appl. math. 2002,(148):341-348.

共引文献17

同被引文献11

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部