期刊文献+

基于集成神经网络的计算机病毒检测方法 被引量:6

Computer viruses detection based on ensemble neural network
在线阅读 下载PDF
导出
摘要 在借鉴传统的特征扫描技术的基础上,提出了一种基于n-gram分析的计算机病毒自动检测方法。将基于信息增益的特征选择技术引入集成神经网络的构建中,结合Bagging算法,同时扰动训练数据和输入属性生成精确且差异度大的个体分类器,在此基础上以集成的BP神经网络为模式分类器实现对病毒的检测。该法并不针对某一特定病毒,是一种通用的病毒检测器。实验表明提出的检测方法具有较强的泛化能力和较高的精确率。 Motivated by the standard signature-based technique for detecting viruses,we explore the idea of automatically detecting malicious code using the n-gram analysis.After selecting features based on information gain,the BP neural network is used in the process of building and testing the proposed multi-classifiers system.Experimental results produced by the proposed detection engine shows improvement of accuracy and generalization compared to the classification results of the individual classifier.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第13期26-29,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60373023) 湖南省教育厅优秀青年基金资助项目(No.05B072)。
关键词 计算机病毒 集成学习 信息增益 BP神经网络 computer viruses ensemble learning information gain BP neural network
  • 相关文献

参考文献13

  • 1Spinellis D.Reliable identification of bounded-length viruses is NP-complete[J].IEEE Transactions on information Theory,2003,49(1):280-284.
  • 2Tesauro G J,Kephart J O.Neural networks for computer virus recognition[J].IEEE Expert, 1996,8:5-6.
  • 3Symantec Corporation. Understanding heuristics : symantec ' s blood hound technology[DB/OL].Symantec White Paper Series,Volume XXXIV.http:// www.symantec.com /avcenter /reference /heuristc.pdf.
  • 4何申,张四海,王煦法,马建辉,曹先彬.网络脚本病毒的统计分析方法[J].计算机学报,2006,29(6):969-975. 被引量:11
  • 5Kolter J Z,Maloof M A.Learning to detect malicious executables in the wild[C]//KDD'04:Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press 2004 470-478.
  • 6Hansen L K.Salamon P.Neural network ensembles[J].IEEE Trans Pattern Analysis and machine Intelligence, 1990,12(10):993-1001.
  • 7Krogh A,Vedelsby J.Neural network ensembles,cross validation,and active learning[C]//Tesauro D,Touretzky D,Leen T.Advances in Neural Information Processing Systems 7.Cambridge,MA:MIT Press,1995 : 231-238.
  • 8Jurafsky D,James I-I.Speech and language processing[M].New York:Prentice-Hall, Inc, 2000.
  • 9Kephart J,Arnold W.Automatic extraction of computer virus signatures[C]//Proceedings of the 4th Virus Bulletin International Conference, Abingdon, 1994 : 178-184.
  • 10Schapire R E.The strength of weak learnability[J].Machine Learing,1990,5(2) : 197-227.

二级参考文献5

  • 1Hofmeyr S.,Forrest S..Immunity by design:An artificial immune system.In:Proceedings of the Genetic and Evolutionary Computation Conference,San Francisco,USA,2003,1~ 10
  • 2Rabek J.C.et al.Detection of injected,dynamically generated and obfuscated malicious code.In:Proceedings of the 2003 ACM Workshop on Rapid Malcode,Washington,DC,USA,2003,76~82
  • 3Bhattacharyya M.,Schultz M.G.,Eskin E.,Hershkop S.,Stolfo S.J..MET:An experimental system for malicious email tracking.In:Proceedings of the NSPW 2002,2002
  • 4Liljenstam M.et al.Simulating realistic network worm traffic for worm warning system design and testing.In:Proceedings of the 2003 ACM Workshop on Rapid Malcode,Washington,DC,USA,2003,24~33
  • 5Wagner D.,Dean D..Intrusion detection via static analysis.In:Proceedings of the IEEE Symposium on Security and Privacy,Oakland,CA,2001,156~168

共引文献10

同被引文献51

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部