期刊文献+

Study of Feature Extraction Based on Autoregressive Modeling in ECG Automatic Diagnosis 被引量:3

Study of Feature Extraction Based on Autoregressive Modeling in ECG Automatic Diagnosis
在线阅读 下载PDF
导出
摘要 This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool. This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool.
出处 《自动化学报》 EI CSCD 北大核心 2007年第5期462-466,共5页 Acta Automatica Sinica
基金 Supported by Natural Science Foundation of Zhejiang Province of P.R.China(Y104284)
关键词 自动诊断 多元自回归模型 特征提取 心电图 Autoregressive model, ECG features, classification, automatic diagnosis.
  • 相关文献

参考文献1

二级参考文献20

  • 1Jalaleddine SMS, Hutchens CG, Strattan RD, et al. ECG data compression techniques-a unified approach[J]. IEEE Trans on BME.1990,37:329-343.
  • 2Duda RO, Hart PE. Pattern classification[M]. United States of america: A wiley-Interscience Publication, John Wiley & Sons. INC 2001,219-223.
  • 3Caswell SA, Kluge KS, Chiang CMJ. Pattern recognition of cardiac arrhythmias using two intracardiac channels[C]. Proc Comp Cardiol. 1993,181-184.
  • 4Zhou SH, Rautaharju PM, Calhoun HP. Selection of a reduced set of parameters for classification of ventricular conduction defects by cluster analysis[C]. Proc Comp Cardiol. 1993,879-882.
  • 5Minami KC, Nakajima H, Toyoshima T. Real-time discrimination of ventricular tachyarrythmia with Fourier-transform neural network[J]. IEEE Trans Biomed Eng. 1999,46:179-185.
  • 6Afonoso VX, Tompkins WJ. Detecting ventricular fibrillation: Selecting the appropriate time-frequency analysis tool for the application[J]. IEEE Eng Med Biol Mag. 1995,14:152-159.
  • 7Zhang XS, Zhu YS, Thakor NV, et al. Detecting ventricular tachycardia and fibrillation by complexity measure[J]. IEEE Trans Biomed Eng. 1999,46:548-555.
  • 8Chen SW. Two-stage discrimination of cardiac arrhythmias using a total least squares-based Prony modeling algorithm[J]. IEEE Trans Biomed Eng. 2000,47:1317-1326.
  • 9Arnold M, Miltner WHR, Witte H. Adaptive AR modeling of nonstationary time series by means of Kalman filtering[J]. IEEE Trans Biomed Eng. 1998,45:553-562.
  • 10Ham FM, Han S. Classification of cardiac arrhythmias using fuzzy ARTMAP[J]. IEEE Trans Biomed Eng.1996,43:425-430.

共引文献7

同被引文献31

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部